Основы мат. анализа Примеры

Risolvere per x логарифм 3(2x+1)+ логарифм 3(x+4)=2
Этап 1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Применим свойство дистрибутивности.
Этап 1.1.2
Умножим на .
Этап 1.1.3
Перенесем влево от .
Этап 1.1.4
Применим свойство дистрибутивности.
Этап 1.1.5
Перенесем влево от .
Этап 1.2
Упростим путем добавления членов.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Добавим и .
Этап 1.2.2
Добавим и .
Этап 1.2.3
Изменим порядок множителей в .
Этап 2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Упростим путем переноса под логарифм.
Этап 2.1.2
Возведем в степень .
Этап 2.1.3
Упростим путем переноса под логарифм.
Этап 2.1.4
Возведем в степень .
Этап 3
Вычтем из обеих частей уравнения.
Этап 4
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Разделим каждый член на .
Этап 4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Сократим общий множитель.
Этап 4.2.1.2
Разделим на .
Этап 4.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Вынесем знак минуса перед дробью.
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: