Введите задачу...
Основы мат. анализа Примеры
Этап 1
Чтобы решить относительно , перепишем уравнение, используя свойства логарифмов.
Этап 2
Перепишем в экспоненциальной форме, используя определение логарифма. Если и — положительные вещественные числа и , то эквивалентно .
Этап 3
Этап 3.1
Перепишем уравнение в виде .
Этап 3.2
Любое число в степени равно .
Этап 3.3
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 3.4
Упростим правую часть.
Этап 3.4.1
Точное значение : .
Этап 3.5
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 3.6
Упростим .
Этап 3.6.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.6.2
Объединим дроби.
Этап 3.6.2.1
Объединим и .
Этап 3.6.2.2
Объединим числители над общим знаменателем.
Этап 3.6.3
Упростим числитель.
Этап 3.6.3.1
Перенесем влево от .
Этап 3.6.3.2
Вычтем из .
Этап 3.7
Найдем период .
Этап 3.7.1
Период функции можно вычислить по формуле .
Этап 3.7.2
Заменим на в формуле периода.
Этап 3.7.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 3.7.4
Разделим на .
Этап 3.8
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого