Введите задачу...
Основы мат. анализа Примеры
Этап 1
Этап 1.1
Разделим каждый член на .
Этап 1.2
Упростим левую часть.
Этап 1.2.1
Сократим общий множитель .
Этап 1.2.1.1
Сократим общий множитель.
Этап 1.2.1.2
Перепишем это выражение.
Этап 1.3
Упростим правую часть.
Этап 1.3.1
Разделим дроби.
Этап 1.3.2
Выразим через синусы и косинусы.
Этап 1.3.3
Умножим на обратную дробь, чтобы разделить на .
Этап 1.3.4
Упростим.
Этап 1.3.4.1
Возведем в степень .
Этап 1.3.4.2
Возведем в степень .
Этап 1.3.4.3
Применим правило степени для объединения показателей.
Этап 1.3.4.4
Добавим и .
Этап 1.3.5
Разделим на .
Этап 2
Перепишем уравнение в виде .
Этап 3
Этап 3.1
Разделим каждый член на .
Этап 3.2
Упростим левую часть.
Этап 3.2.1
Сократим общий множитель .
Этап 3.2.1.1
Сократим общий множитель.
Этап 3.2.1.2
Разделим на .
Этап 4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 5
Этап 5.1
Перепишем в виде .
Этап 5.2
Любой корень из равен .
Этап 5.3
Упростим знаменатель.
Этап 5.3.1
Перепишем в виде .
Этап 5.3.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 6
Этап 6.1
Сначала с помощью положительного значения найдем первое решение.
Этап 6.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 6.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 7
Выпишем каждое выражение, чтобы найти решение для .
Этап 8
Этап 8.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 8.2
Упростим правую часть.
Этап 8.2.1
Найдем значение .
Этап 8.3
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 8.4
Решим относительно .
Этап 8.4.1
Избавимся от скобок.
Этап 8.4.2
Избавимся от скобок.
Этап 8.4.3
Вычтем из .
Этап 8.5
Найдем период .
Этап 8.5.1
Период функции можно вычислить по формуле .
Этап 8.5.2
Заменим на в формуле периода.
Этап 8.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 8.5.4
Разделим на .
Этап 8.6
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 9
Этап 9.1
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 9.2
Упростим правую часть.
Этап 9.2.1
Найдем значение .
Этап 9.3
Функция синуса отрицательна в третьем и четвертом квадрантах. Для нахождения второго решения вычтем решение из , чтобы найти угол приведения. Затем добавим этот угол приведения к и найдем решение в третьем квадранте.
Этап 9.4
Упростим выражение, чтобы найти второе решение.
Этап 9.4.1
Вычтем из .
Этап 9.4.2
Результирующий угол является положительным, меньшим и отличается от на полный оборот.
Этап 9.5
Найдем период .
Этап 9.5.1
Период функции можно вычислить по формуле .
Этап 9.5.2
Заменим на в формуле периода.
Этап 9.5.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 9.5.4
Разделим на .
Этап 9.6
Добавим к каждому отрицательному углу, чтобы получить положительные углы.
Этап 9.6.1
Добавим к , чтобы найти положительный угол.
Этап 9.6.2
Вычтем из .
Этап 9.6.3
Перечислим новые углы.
Этап 9.7
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
Этап 10
Перечислим все решения.
, для любого целого
Этап 11
Этап 11.1
Объединим и в .
, для любого целого
Этап 11.2
Объединим и в .
, для любого целого
, для любого целого