Введите задачу...
Основы мат. анализа Примеры
Этап 1
Этап 1.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Этап 1.3.1
Умножим на .
Этап 1.3.2
Умножим на .
Этап 1.3.3
Изменим порядок множителей в .
Этап 1.4
Объединим числители над общим знаменателем.
Этап 1.5
Упростим числитель.
Этап 1.5.1
Вынесем множитель из .
Этап 1.5.1.1
Вынесем множитель из .
Этап 1.5.1.2
Вынесем множитель из .
Этап 1.5.1.3
Вынесем множитель из .
Этап 1.5.2
Применим свойство дистрибутивности.
Этап 1.5.3
Умножим на .
Этап 1.5.4
Вычтем из .
Этап 1.5.5
Добавим и .
Этап 1.6
Умножим на .
Этап 2
Умножим обе части на .
Этап 3
Этап 3.1
Упростим левую часть.
Этап 3.1.1
Сократим общий множитель .
Этап 3.1.1.1
Сократим общий множитель.
Этап 3.1.1.2
Перепишем это выражение.
Этап 3.2
Упростим правую часть.
Этап 3.2.1
Упростим .
Этап 3.2.1.1
Упростим путем перемножения.
Этап 3.2.1.1.1
Умножим на .
Этап 3.2.1.1.2
Применим свойство дистрибутивности.
Этап 3.2.1.1.3
Упростим выражение.
Этап 3.2.1.1.3.1
Умножим на .
Этап 3.2.1.1.3.2
Перенесем влево от .
Этап 3.2.1.2
Перепишем в виде .
Этап 4
Этап 4.1
Перепишем уравнение в виде .
Этап 4.2
Вычтем из обеих частей уравнения.
Этап 4.3
Разложим на множители, используя метод группировки.
Этап 4.3.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 4.3.2
Запишем разложение на множители, используя данные целые числа.
Этап 4.4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4.5
Приравняем к , затем решим относительно .
Этап 4.5.1
Приравняем к .
Этап 4.5.2
Добавим к обеим частям уравнения.
Этап 4.6
Приравняем к , затем решим относительно .
Этап 4.6.1
Приравняем к .
Этап 4.6.2
Вычтем из обеих частей уравнения.
Этап 4.7
Окончательным решением являются все значения, при которых верно.
Этап 5
Этап 5.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 5.2
Решим относительно .
Этап 5.2.1
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5.2.2
Приравняем к .
Этап 5.2.3
Приравняем к , затем решим относительно .
Этап 5.2.3.1
Приравняем к .
Этап 5.2.3.2
Добавим к обеим частям уравнения.
Этап 5.2.4
Окончательным решением являются все значения, при которых верно.
Этап 5.3
Область определения ― это все значения , при которых выражение определено.
Этап 6
Используем каждый корень для создания контрольных интервалов.
Этап 7
Этап 7.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 7.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 7.1.2
Заменим на в исходном неравенстве.
Этап 7.1.3
Левая часть меньше правой части , значит, данное утверждение ложно.
False
False
Этап 7.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 7.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 7.2.2
Заменим на в исходном неравенстве.
Этап 7.2.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 7.3
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 7.3.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 7.3.2
Заменим на в исходном неравенстве.
Этап 7.3.3
Левая часть меньше правой части , значит, данное утверждение ложно.
False
False
Этап 7.4
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 7.4.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 7.4.2
Заменим на в исходном неравенстве.
Этап 7.4.3
Левая часть больше правой части , значит, данное утверждение всегда истинно.
True
True
Этап 7.5
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 7.5.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 7.5.2
Заменим на в исходном неравенстве.
Этап 7.5.3
Левая часть меньше правой части , значит, данное утверждение ложно.
False
False
Этап 7.6
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Ложь
Истина
Ложь
Истина
Ложь
Ложь
Истина
Ложь
Истина
Ложь
Этап 8
Решение состоит из всех истинных интервалов.
или
Этап 9
Преобразуем неравенство в интервальное представление.
Этап 10