Введите задачу...
Основы мат. анализа Примеры
Этап 1
Этап 1.1
Разделим каждый член на .
Этап 1.2
Упростим левую часть.
Этап 1.2.1
Сократим общий множитель .
Этап 1.2.1.1
Сократим общий множитель.
Этап 1.2.1.2
Разделим на .
Этап 2
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 3
Этап 3.1
Найдем значение .
Этап 4
Этап 4.1
Разделим каждый член на .
Этап 4.2
Упростим левую часть.
Этап 4.2.1
Сократим общий множитель .
Этап 4.2.1.1
Сократим общий множитель.
Этап 4.2.1.2
Разделим на .
Этап 4.3
Упростим правую часть.
Этап 4.3.1
Разделим на .
Этап 5
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 6
Этап 6.1
Упростим.
Этап 6.1.1
Умножим на .
Этап 6.1.2
Вычтем из .
Этап 6.2
Разделим каждый член на и упростим.
Этап 6.2.1
Разделим каждый член на .
Этап 6.2.2
Упростим левую часть.
Этап 6.2.2.1
Сократим общий множитель .
Этап 6.2.2.1.1
Сократим общий множитель.
Этап 6.2.2.1.2
Разделим на .
Этап 6.2.3
Упростим правую часть.
Этап 6.2.3.1
Разделим на .
Этап 7
Этап 7.1
Период функции можно вычислить по формуле .
Этап 7.2
Заменим на в формуле периода.
Этап 7.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 7.4
Сократим общий множитель и .
Этап 7.4.1
Вынесем множитель из .
Этап 7.4.2
Сократим общие множители.
Этап 7.4.2.1
Вынесем множитель из .
Этап 7.4.2.2
Сократим общий множитель.
Этап 7.4.2.3
Перепишем это выражение.
Этап 8
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого