Основы мат. анализа Примеры

Определить нули и их кратности x^5-25x^3
Этап 1
Приравняем к .
Этап 2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.1.1.1
Вынесем множитель из .
Этап 2.1.1.2
Вынесем множитель из .
Этап 2.1.1.3
Вынесем множитель из .
Этап 2.1.2
Перепишем в виде .
Этап 2.1.3
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 2.1.3.1
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 2.1.3.2
Избавимся от ненужных скобок.
Этап 2.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Приравняем к .
Этап 2.3.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 2.3.2.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.3.2.2.1
Перепишем в виде .
Этап 2.3.2.2.2
Вынесем члены из-под знака корня, предполагая, что это вещественные числа.
Этап 2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.1
Приравняем к .
Этап 2.4.2
Вычтем из обеих частей уравнения.
Этап 2.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.5.1
Приравняем к .
Этап 2.5.2
Добавим к обеим частям уравнения.
Этап 2.6
Окончательным решением являются все значения, при которых верно. Кратность корня ― это количество появлений этого корня.
(кратно )
(кратно )
(кратно )
(кратно )
(кратно )
(кратно )
Этап 3