Основы мат. анализа Примеры

Решить через дискриминант x(3x-2)=4
Этап 1
Перенесем все члены в левую часть уравнения и упростим.
Нажмите для увеличения количества этапов...
Этап 1.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
Упростим путем перемножения.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1.1
Применим свойство дистрибутивности.
Этап 1.1.1.1.2
Упорядочим.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1.2.1
Перепишем, используя свойство коммутативности умножения.
Этап 1.1.1.1.2.2
Перенесем влево от .
Этап 1.1.1.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.1.1.2.1
Перенесем .
Этап 1.1.1.2.2
Умножим на .
Этап 1.2
Вычтем из обеих частей уравнения.
Этап 2
Используем формулу для нахождения корней квадратного уравнения.
Этап 3
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 4
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Возведем в степень .
Этап 4.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
Умножим на .
Этап 4.1.2.2
Умножим на .
Этап 4.1.3
Добавим и .
Этап 4.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 4.1.4.1
Вынесем множитель из .
Этап 4.1.4.2
Перепишем в виде .
Этап 4.1.5
Вынесем члены из-под знака корня.
Этап 4.2
Умножим на .
Этап 4.3
Упростим .
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: