Основы мат. анализа Примеры

Найти асимптоты (y-3)^2-4(x-1)^2=36
Этап 1
Найдем стандартную форму уравнения гиперболы.
Нажмите для увеличения количества этапов...
Этап 1.1
Разделим каждый член на , чтобы правая часть была равна единице.
Этап 1.2
Упростим каждый член уравнения, чтобы правая часть была равна . Стандартная форма уравнения эллипса или гиперболы требует, чтобы правая часть уравнения была равна .
Этап 2
Это формула гиперболы. Используем эту формулу для определения значений, требуемых для нахождения асимптот гиперболы.
Этап 3
Сопоставим параметры гиперболы со значениями в стандартной форме. Переменная представляет сдвиг по оси X от начала координат,  — сдвиг по оси Y от начала координат, .
Этап 4
Асимптоты имеют вид , так как ветви этой гиперболы направлены вверх и вниз.
Этап 5
Упростим, чтобы найти первую асимптоту.
Нажмите для увеличения количества этапов...
Этап 5.1
Избавимся от скобок.
Этап 5.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.2.1.1
Умножим на .
Этап 5.2.1.2
Применим свойство дистрибутивности.
Этап 5.2.1.3
Умножим на .
Этап 5.2.2
Добавим и .
Этап 6
Упростим, чтобы найти вторую асимптоту.
Нажмите для увеличения количества этапов...
Этап 6.1
Избавимся от скобок.
Этап 6.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 6.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 6.2.1.1
Умножим на .
Этап 6.2.1.2
Применим свойство дистрибутивности.
Этап 6.2.1.3
Умножим на .
Этап 6.2.2
Добавим и .
Этап 7
Эта гипербола имеет две асимптоты.
Этап 8
Асимптоты: и .
Асимптоты:
Этап 9