Основы мат. анализа Примеры

Решить с помощью дополнения до полного квадрата 2x^2+4x-6=0
Этап 1
Добавим к обеим частям уравнения.
Этап 2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.1
Разделим каждый член на .
Этап 2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1.1
Сократим общий множитель.
Этап 2.2.1.1.2
Разделим на .
Этап 2.2.1.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 2.2.1.2.1
Вынесем множитель из .
Этап 2.2.1.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 2.2.1.2.2.1
Вынесем множитель из .
Этап 2.2.1.2.2.2
Сократим общий множитель.
Этап 2.2.1.2.2.3
Перепишем это выражение.
Этап 2.2.1.2.2.4
Разделим на .
Этап 2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Разделим на .
Этап 3
Чтобы получить квадратный трехчлен в левой части уравнение, найдем значение, равное квадрату половины .
Этап 4
Прибавим это слагаемое к каждой части уравнения.
Этап 5
Упростим уравнение.
Нажмите для увеличения количества этапов...
Этап 5.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.1.1
Единица в любой степени равна единице.
Этап 5.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.2.1.1
Единица в любой степени равна единице.
Этап 5.2.1.2
Добавим и .
Этап 6
Разложим полный квадрат трехчлена на .
Этап 7
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 7.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 7.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 7.2.1
Перепишем в виде .
Этап 7.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 7.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 7.3.1
Сначала с помощью положительного значения найдем первое решение.
Этап 7.3.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 7.3.2.1
Вычтем из обеих частей уравнения.
Этап 7.3.2.2
Вычтем из .
Этап 7.3.3
Затем, используя отрицательное значение , найдем второе решение.
Этап 7.3.4
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 7.3.4.1
Вычтем из обеих частей уравнения.
Этап 7.3.4.2
Вычтем из .
Этап 7.3.5
Полное решение является результатом как положительных, так и отрицательных частей решения.