Введите задачу...
Основы мат. анализа Примеры
Этап 1
Этап 1.1
Перегруппируем члены.
Этап 1.2
Вынесем множитель из .
Этап 1.2.1
Вынесем множитель из .
Этап 1.2.2
Вынесем множитель из .
Этап 1.2.3
Вынесем множитель из .
Этап 1.3
Перепишем в виде .
Этап 1.4
Разложим на множители.
Этап 1.4.1
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 1.4.2
Избавимся от ненужных скобок.
Этап 1.5
Перепишем в виде .
Этап 1.6
Пусть . Подставим вместо для всех.
Этап 1.7
Разложим на множители методом группировки
Этап 1.7.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 1.7.1.1
Вынесем множитель из .
Этап 1.7.1.2
Запишем как плюс
Этап 1.7.1.3
Применим свойство дистрибутивности.
Этап 1.7.2
Вынесем наибольший общий делитель из каждой группы.
Этап 1.7.2.1
Сгруппируем первые два члена и последние два члена.
Этап 1.7.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 1.7.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 1.8
Заменим все вхождения на .
Этап 1.9
Перепишем в виде .
Этап 1.10
Разложим на множители.
Этап 1.10.1
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 1.10.2
Избавимся от ненужных скобок.
Этап 1.11
Вынесем множитель из .
Этап 1.11.1
Вынесем множитель из .
Этап 1.11.2
Вынесем множитель из .
Этап 1.11.3
Вынесем множитель из .
Этап 1.12
Пусть . Подставим вместо для всех.
Этап 1.13
Разложим на множители методом группировки
Этап 1.13.1
Изменим порядок членов.
Этап 1.13.2
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 1.13.2.1
Вынесем множитель из .
Этап 1.13.2.2
Запишем как плюс
Этап 1.13.2.3
Применим свойство дистрибутивности.
Этап 1.13.3
Вынесем наибольший общий делитель из каждой группы.
Этап 1.13.3.1
Сгруппируем первые два члена и последние два члена.
Этап 1.13.3.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 1.13.4
Разложим многочлен, вынеся наибольший общий делитель .
Этап 1.14
Разложим на множители.
Этап 1.14.1
Заменим все вхождения на .
Этап 1.14.2
Избавимся от ненужных скобок.
Этап 2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3
Этап 3.1
Приравняем к .
Этап 3.2
Вычтем из обеих частей уравнения.
Этап 4
Этап 4.1
Приравняем к .
Этап 4.2
Добавим к обеим частям уравнения.
Этап 5
Этап 5.1
Приравняем к .
Этап 5.2
Вычтем из обеих частей уравнения.
Этап 6
Этап 6.1
Приравняем к .
Этап 6.2
Решим относительно .
Этап 6.2.1
Добавим к обеим частям уравнения.
Этап 6.2.2
Разделим каждый член на и упростим.
Этап 6.2.2.1
Разделим каждый член на .
Этап 6.2.2.2
Упростим левую часть.
Этап 6.2.2.2.1
Сократим общий множитель .
Этап 6.2.2.2.1.1
Сократим общий множитель.
Этап 6.2.2.2.1.2
Разделим на .
Этап 7
Окончательным решением являются все значения, при которых верно.
Этап 8