Введите задачу...
Основы мат. анализа Примеры
Этап 1
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Добавим к обеим частям уравнения.
Этап 2
Этап 2.1
Используем свойства произведения логарифмов: .
Этап 2.2
Упростим каждый член.
Этап 2.2.1
Применим свойство дистрибутивности.
Этап 2.2.2
Умножим на .
Этап 3
Добавим к обеим частям уравнения.
Этап 4
Перепишем в экспоненциальной форме, используя определение логарифма. Если и — положительные вещественные числа и , то эквивалентно .
Этап 5
Этап 5.1
Перепишем уравнение в виде .
Этап 5.2
Вычтем из обеих частей уравнения.
Этап 5.3
Разложим на множители, используя метод группировки.
Этап 5.3.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 5.3.2
Запишем разложение на множители, используя данные целые числа.
Этап 5.4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5.5
Приравняем к , затем решим относительно .
Этап 5.5.1
Приравняем к .
Этап 5.5.2
Добавим к обеим частям уравнения.
Этап 5.6
Приравняем к , затем решим относительно .
Этап 5.6.1
Приравняем к .
Этап 5.6.2
Вычтем из обеих частей уравнения.
Этап 5.7
Окончательным решением являются все значения, при которых верно.