Основы мат. анализа Примеры

Решить с помощью разложения на множители логарифм x+9=1- логарифм x
Этап 1
Перенесем все выражения в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Добавим к обеим частям уравнения.
Этап 2
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.1
Используем свойства произведения логарифмов: .
Этап 2.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Применим свойство дистрибутивности.
Этап 2.2.2
Умножим на .
Этап 3
Добавим к обеим частям уравнения.
Этап 4
Перепишем в экспоненциальной форме, используя определение логарифма. Если и  — положительные вещественные числа и , то эквивалентно .
Этап 5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Перепишем уравнение в виде .
Этап 5.2
Вычтем из обеих частей уравнения.
Этап 5.3
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 5.3.2
Запишем разложение на множители, используя данные целые числа.
Этап 5.4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.5.1
Приравняем к .
Этап 5.5.2
Добавим к обеим частям уравнения.
Этап 5.6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.6.1
Приравняем к .
Этап 5.6.2
Вычтем из обеих частей уравнения.
Этап 5.7
Окончательным решением являются все значения, при которых верно.