Основы мат. анализа Примеры

Определить корни (нули) e^x-6e^(-x)-1=0
Этап 1
Перепишем в виде степенного выражения.
Этап 2
Подставим вместо .
Этап 3
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 3.2
Объединим и .
Этап 3.3
Вынесем знак минуса перед дробью.
Этап 4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 4.1.2
НОК единицы и любого выражения есть это выражение.
Этап 4.2
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Умножим каждый член на .
Этап 4.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1.1
Умножим на .
Этап 4.2.2.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.2.1.2.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 4.2.2.1.2.2
Сократим общий множитель.
Этап 4.2.2.1.2.3
Перепишем это выражение.
Этап 4.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.3.1
Умножим на .
Этап 4.3
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 4.3.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 4.3.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 4.3.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4.3.3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.3.3.1
Приравняем к .
Этап 4.3.3.2
Добавим к обеим частям уравнения.
Этап 4.3.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.3.4.1
Приравняем к .
Этап 4.3.4.2
Вычтем из обеих частей уравнения.
Этап 4.3.5
Окончательным решением являются все значения, при которых верно.
Этап 5
Подставим вместо в .
Этап 6
Решим .
Нажмите для увеличения количества этапов...
Этап 6.1
Перепишем уравнение в виде .
Этап 6.2
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 6.3
Развернем левую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.1
Развернем , вынося из логарифма.
Этап 6.3.2
Натуральный логарифм равен .
Этап 6.3.3
Умножим на .
Этап 7
Подставим вместо в .
Этап 8
Решим .
Нажмите для увеличения количества этапов...
Этап 8.1
Перепишем уравнение в виде .
Этап 8.2
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 8.3
Уравнение невозможно решить, так как выражение не определено.
Неопределенные
Этап 8.4
Нет решения для
Нет решения
Нет решения
Этап 9
Перечислим решения, делающие уравнение истинным.
Этап 10