Основы мат. анализа Примеры

Решить с помощью разложения на множители 2y^2-y-1/2=0
Этап 1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2
Объединим и .
Этап 3
Объединим числители над общим знаменателем.
Этап 4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.1
Умножим на .
Этап 4.2
Перепишем в виде .
Этап 4.3
Перепишем в виде .
Этап 4.4
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 5
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 6
Объединим и .
Этап 7
Объединим числители над общим знаменателем.
Этап 8
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 8.1
Умножим на .
Этап 8.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 8.2.1
Применим свойство дистрибутивности.
Этап 8.2.2
Применим свойство дистрибутивности.
Этап 8.2.3
Применим свойство дистрибутивности.
Этап 8.3
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 8.3.1
Изменим порядок множителей в членах и .
Этап 8.3.2
Добавим и .
Этап 8.3.3
Добавим и .
Этап 8.4
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 8.4.1
Перепишем, используя свойство коммутативности умножения.
Этап 8.4.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 8.4.2.1
Перенесем .
Этап 8.4.2.2
Умножим на .
Этап 8.4.3
Умножим на .
Этап 8.4.4
Умножим на .
Этап 8.5
Изменим порядок членов.
Этап 9
Приравняем числитель к нулю.
Этап 10
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 10.1
Используем формулу для нахождения корней квадратного уравнения.
Этап 10.2
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 10.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 10.3.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 10.3.1.1
Возведем в степень .
Этап 10.3.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 10.3.1.2.1
Умножим на .
Этап 10.3.1.2.2
Умножим на .
Этап 10.3.1.3
Добавим и .
Этап 10.3.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 10.3.1.4.1
Вынесем множитель из .
Этап 10.3.1.4.2
Перепишем в виде .
Этап 10.3.1.5
Вынесем члены из-под знака корня.
Этап 10.3.2
Умножим на .
Этап 10.3.3
Упростим .
Этап 10.4
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 10.4.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 10.4.1.1
Возведем в степень .
Этап 10.4.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 10.4.1.2.1
Умножим на .
Этап 10.4.1.2.2
Умножим на .
Этап 10.4.1.3
Добавим и .
Этап 10.4.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 10.4.1.4.1
Вынесем множитель из .
Этап 10.4.1.4.2
Перепишем в виде .
Этап 10.4.1.5
Вынесем члены из-под знака корня.
Этап 10.4.2
Умножим на .
Этап 10.4.3
Упростим .
Этап 10.4.4
Заменим на .
Этап 10.5
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 10.5.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 10.5.1.1
Возведем в степень .
Этап 10.5.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 10.5.1.2.1
Умножим на .
Этап 10.5.1.2.2
Умножим на .
Этап 10.5.1.3
Добавим и .
Этап 10.5.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 10.5.1.4.1
Вынесем множитель из .
Этап 10.5.1.4.2
Перепишем в виде .
Этап 10.5.1.5
Вынесем члены из-под знака корня.
Этап 10.5.2
Умножим на .
Этап 10.5.3
Упростим .
Этап 10.5.4
Заменим на .
Этап 10.6
Окончательный ответ является комбинацией обоих решений.
Этап 11
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: