Введите задачу...
Основы мат. анализа Примеры
Этап 1
Если у многочленной функции целые коэффициенты, то каждый рациональный ноль будет иметь вид , где — делитель константы, а — делитель старшего коэффициента.
Этап 2
Найдем все комбинации . Это ― возможные корни многочлена.
Этап 3
Подставим возможные корни поочередно в многочлен, чтобы найти фактические корни. Упростим и убедимся, что это значение равно , значит, это корень.
Этап 4
Этап 4.1
Упростим каждый член.
Этап 4.1.1
Возведем в степень .
Этап 4.1.2
Возведем в степень .
Этап 4.1.3
Умножим на .
Этап 4.1.4
Возведем в степень .
Этап 4.1.5
Умножим на .
Этап 4.1.6
Умножим на .
Этап 4.2
Упростим путем сложения и вычитания.
Этап 4.2.1
Добавим и .
Этап 4.2.2
Добавим и .
Этап 4.2.3
Вычтем из .
Этап 4.2.4
Добавим и .
Этап 5
Поскольку — известный корень, разделим многочлен на , чтобы найти частное многочленов. Этот многочлен можно будет использовать, чтобы найти оставшиеся корни.
Этап 6
Этап 6.1
Поместим числа, представляющие делитель и делимое, в конфигурацию для деления.
Этап 6.2
Первое число в делимом помещается в первую позицию области результата (ниже горизонтальной линии).
Этап 6.3
Умножим последний элемент в области результата на делитель и запишем их произведение под следующим членом делимого .
Этап 6.4
Сложим результат умножения и делимое число и поместим результат в следующую позицию в строке результатов.
Этап 6.5
Умножим последний элемент в области результата на делитель и запишем их произведение под следующим членом делимого .
Этап 6.6
Сложим результат умножения и делимое число и поместим результат в следующую позицию в строке результатов.
Этап 6.7
Умножим последний элемент в области результата на делитель и запишем их произведение под следующим членом делимого .
Этап 6.8
Сложим результат умножения и делимое число и поместим результат в следующую позицию в строке результатов.
Этап 6.9
Умножим последний элемент в области результата на делитель и запишем их произведение под следующим членом делимого .
Этап 6.10
Сложим результат умножения и делимое число и поместим результат в следующую позицию в строке результатов.
Этап 6.11
Все числа, кроме последнего, становятся коэффициентами фактор-многочлена. Последнее значение в строке результатов — это остаток.
Этап 6.12
Упростим частное многочленов.
Этап 7
Этап 7.1
Разложим на множители, используя теорему о рациональных корнях.
Этап 7.1.1
Если у многочленной функции целые коэффициенты, то каждый рациональный ноль будет иметь вид , где — делитель константы, а — делитель старшего коэффициента.
Этап 7.1.2
Найдем все комбинации . Это ― возможные корни многочлена.
Этап 7.1.3
Подставим и упростим выражение. В этом случае выражение равно , поэтому является корнем многочлена.
Этап 7.1.3.1
Подставим в многочлен.
Этап 7.1.3.2
Возведем в степень .
Этап 7.1.3.3
Возведем в степень .
Этап 7.1.3.4
Умножим на .
Этап 7.1.3.5
Вычтем из .
Этап 7.1.3.6
Умножим на .
Этап 7.1.3.7
Вычтем из .
Этап 7.1.3.8
Добавим и .
Этап 7.1.4
Поскольку — известный корень, разделим многочлен на , чтобы найти частное многочленов. Этот многочлен можно будет использовать, чтобы найти оставшиеся корни.
Этап 7.1.5
Разделим на .
Этап 7.1.5.1
Подготовим многочлены к делению. Если слагаемые представляют не все экспоненты, добавим отсутствующий член со значением .
+ | - | + | + |
Этап 7.1.5.2
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
+ | - | + | + |
Этап 7.1.5.3
Умножим новое частное на делитель.
+ | - | + | + | ||||||||
+ | + |
Этап 7.1.5.4
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
+ | - | + | + | ||||||||
- | - |
Этап 7.1.5.5
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
+ | - | + | + | ||||||||
- | - | ||||||||||
- |
Этап 7.1.5.6
Вынесем следующие члены из исходного делимого в текущее делимое.
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + |
Этап 7.1.5.7
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + |
Этап 7.1.5.8
Умножим новое частное на делитель.
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
- | - |
Этап 7.1.5.9
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + |
Этап 7.1.5.10
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ |
Этап 7.1.5.11
Вынесем следующие члены из исходного делимого в текущее делимое.
- | |||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + |
Этап 7.1.5.12
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
- | + | ||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + |
Этап 7.1.5.13
Умножим новое частное на делитель.
- | + | ||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
+ | + |
Этап 7.1.5.14
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
- | + | ||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
- | - |
Этап 7.1.5.15
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
- | + | ||||||||||
+ | - | + | + | ||||||||
- | - | ||||||||||
- | + | ||||||||||
+ | + | ||||||||||
+ | + | ||||||||||
- | - | ||||||||||
Этап 7.1.5.16
Поскольку остаток равен , окончательным ответом является частное.
Этап 7.1.6
Запишем в виде набора множителей.
Этап 7.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 7.3
Приравняем к , затем решим относительно .
Этап 7.3.1
Приравняем к .
Этап 7.3.2
Вычтем из обеих частей уравнения.
Этап 7.4
Приравняем к , затем решим относительно .
Этап 7.4.1
Приравняем к .
Этап 7.4.2
Решим относительно .
Этап 7.4.2.1
Используем формулу для нахождения корней квадратного уравнения.
Этап 7.4.2.2
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 7.4.2.3
Упростим.
Этап 7.4.2.3.1
Упростим числитель.
Этап 7.4.2.3.1.1
Возведем в степень .
Этап 7.4.2.3.1.2
Умножим .
Этап 7.4.2.3.1.2.1
Умножим на .
Этап 7.4.2.3.1.2.2
Умножим на .
Этап 7.4.2.3.1.3
Вычтем из .
Этап 7.4.2.3.1.4
Перепишем в виде .
Этап 7.4.2.3.1.5
Перепишем в виде .
Этап 7.4.2.3.1.6
Перепишем в виде .
Этап 7.4.2.3.1.7
Перепишем в виде .
Этап 7.4.2.3.1.8
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 7.4.2.3.1.9
Перенесем влево от .
Этап 7.4.2.3.2
Умножим на .
Этап 7.4.2.3.3
Упростим .
Этап 7.4.2.4
Упростим выражение, которое нужно решить для части значения .
Этап 7.4.2.4.1
Упростим числитель.
Этап 7.4.2.4.1.1
Возведем в степень .
Этап 7.4.2.4.1.2
Умножим .
Этап 7.4.2.4.1.2.1
Умножим на .
Этап 7.4.2.4.1.2.2
Умножим на .
Этап 7.4.2.4.1.3
Вычтем из .
Этап 7.4.2.4.1.4
Перепишем в виде .
Этап 7.4.2.4.1.5
Перепишем в виде .
Этап 7.4.2.4.1.6
Перепишем в виде .
Этап 7.4.2.4.1.7
Перепишем в виде .
Этап 7.4.2.4.1.8
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 7.4.2.4.1.9
Перенесем влево от .
Этап 7.4.2.4.2
Умножим на .
Этап 7.4.2.4.3
Упростим .
Этап 7.4.2.4.4
Заменим на .
Этап 7.4.2.5
Упростим выражение, которое нужно решить для части значения .
Этап 7.4.2.5.1
Упростим числитель.
Этап 7.4.2.5.1.1
Возведем в степень .
Этап 7.4.2.5.1.2
Умножим .
Этап 7.4.2.5.1.2.1
Умножим на .
Этап 7.4.2.5.1.2.2
Умножим на .
Этап 7.4.2.5.1.3
Вычтем из .
Этап 7.4.2.5.1.4
Перепишем в виде .
Этап 7.4.2.5.1.5
Перепишем в виде .
Этап 7.4.2.5.1.6
Перепишем в виде .
Этап 7.4.2.5.1.7
Перепишем в виде .
Этап 7.4.2.5.1.8
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 7.4.2.5.1.9
Перенесем влево от .
Этап 7.4.2.5.2
Умножим на .
Этап 7.4.2.5.3
Упростим .
Этап 7.4.2.5.4
Заменим на .
Этап 7.4.2.6
Окончательный ответ является комбинацией обоих решений.
Этап 7.5
Окончательным решением являются все значения, при которых верно.
Этап 8
Многочлен можно записать в виде набора линейных множителей.
Этап 9
Это корни (нули) многочлена .
Этап 10