Основы мат. анализа Примеры

Найти обратный элемент f(x) = natural log of x-2
Этап 1
Запишем в виде уравнения.
Этап 2
Поменяем переменные местами.
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Перепишем уравнение в виде .
Этап 3.2
Чтобы решить относительно , перепишем уравнение, используя свойства логарифмов.
Этап 3.3
Перепишем в экспоненциальной форме, используя определение логарифма. Если и  — положительные вещественные числа и , то эквивалентно .
Этап 3.4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.4.1
Перепишем уравнение в виде .
Этап 3.4.2
Добавим к обеим частям уравнения.
Этап 4
Заменим на , чтобы получить окончательный ответ.
Этап 5
Проверим, является ли обратной к .
Нажмите для увеличения количества этапов...
Этап 5.1
Чтобы подтвердить обратную, проверим выполнение условий и .
Этап 5.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 5.2.1
Представим результирующую суперпозицию функций.
Этап 5.2.2
Найдем значение , подставив значение в .
Этап 5.2.3
Экспонента и логарифм являются обратными функциями.
Этап 5.2.4
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 5.2.4.1
Добавим и .
Этап 5.2.4.2
Добавим и .
Этап 5.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 5.3.1
Представим результирующую суперпозицию функций.
Этап 5.3.2
Найдем значение , подставив значение в .
Этап 5.3.3
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 5.3.3.1
Вычтем из .
Этап 5.3.3.2
Добавим и .
Этап 5.3.4
Используем основные свойства логарифмов, чтобы вынести из степени.
Этап 5.3.5
Натуральный логарифм равен .
Этап 5.3.6
Умножим на .
Этап 5.4
Так как и , то  — обратная к .