Введите задачу...
Основы мат. анализа Примеры
Этап 1
Этап 1.1
Применим правило умножения к .
Этап 1.2
Возведем в степень .
Этап 2
Квадратичная функция достигает минимума в . Если принимает положительные значения, то минимальным значением функции будет .
входит в
Этап 3
Этап 3.1
Подставим в значения и .
Этап 3.2
Избавимся от скобок.
Этап 3.3
Упростим .
Этап 3.3.1
Сократим общий множитель и .
Этап 3.3.1.1
Вынесем множитель из .
Этап 3.3.1.2
Сократим общие множители.
Этап 3.3.1.2.1
Вынесем множитель из .
Этап 3.3.1.2.2
Сократим общий множитель.
Этап 3.3.1.2.3
Перепишем это выражение.
Этап 3.3.2
Вынесем знак минуса перед дробью.
Этап 3.3.3
Умножим .
Этап 3.3.3.1
Умножим на .
Этап 3.3.3.2
Умножим на .
Этап 4
Этап 4.1
Заменим в этом выражении переменную на .
Этап 4.2
Упростим результат.
Этап 4.2.1
Упростим каждый член.
Этап 4.2.1.1
Применим правило умножения к .
Этап 4.2.1.2
Единица в любой степени равна единице.
Этап 4.2.1.3
Возведем в степень .
Этап 4.2.1.4
Сократим общий множитель .
Этап 4.2.1.4.1
Вынесем множитель из .
Этап 4.2.1.4.2
Сократим общий множитель.
Этап 4.2.1.4.3
Перепишем это выражение.
Этап 4.2.1.5
Объединим и .
Этап 4.2.1.6
Вынесем знак минуса перед дробью.
Этап 4.2.2
Объединим дроби.
Этап 4.2.2.1
Объединим числители над общим знаменателем.
Этап 4.2.2.2
Упростим выражение.
Этап 4.2.2.2.1
Вычтем из .
Этап 4.2.2.2.2
Вынесем знак минуса перед дробью.
Этап 4.2.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.2.4
Объединим и .
Этап 4.2.5
Объединим числители над общим знаменателем.
Этап 4.2.6
Упростим числитель.
Этап 4.2.6.1
Умножим на .
Этап 4.2.6.2
Вычтем из .
Этап 4.2.7
Вынесем знак минуса перед дробью.
Этап 4.2.8
Окончательный ответ: .
Этап 5
Используем значения и , чтобы найти, где достигается минимум.
Этап 6