Основы мат. анализа Примеры

Решить с помощью замены x^2+2xy-y^2=68 , x^2-y^2=-28
,
Этап 1
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 1.1
Добавим к обеим частям уравнения.
Этап 1.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 1.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Сначала с помощью положительного значения найдем первое решение.
Этап 1.3.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 1.3.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2
Решим систему .
Нажмите для увеличения количества этапов...
Этап 2.1
Заменим все вхождения на во всех уравнениях.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Заменим все вхождения в на .
Этап 2.1.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.1.2.1.1
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 2.1.2.1.1.1
С помощью запишем в виде .
Этап 2.1.2.1.1.2
Применим правило степени и перемножим показатели, .
Этап 2.1.2.1.1.3
Объединим и .
Этап 2.1.2.1.1.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.1.2.1.1.4.1
Сократим общий множитель.
Этап 2.1.2.1.1.4.2
Перепишем это выражение.
Этап 2.1.2.1.1.5
Упростим.
Этап 2.1.2.1.2
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 2.1.2.1.2.1
Вычтем из .
Этап 2.1.2.1.2.2
Добавим и .
Этап 2.2
Построим график каждой части уравнения. Решение — абсцисса (координата x) точки пересечения.
Этап 2.3
Заменим все вхождения на во всех уравнениях.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Заменим все вхождения в на .
Этап 2.3.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1.1
Возведем в степень .
Этап 2.3.2.1.2
Добавим и .
Этап 2.3.2.1.3
Перепишем в виде .
Этап 2.3.2.1.4
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 3
Решим систему .
Нажмите для увеличения количества этапов...
Этап 3.1
Заменим все вхождения на во всех уравнениях.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Заменим все вхождения в на .
Этап 3.1.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.1.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.1.2.1.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.1.2.1.1.1
Применим правило умножения к .
Этап 3.1.2.1.1.2
Возведем в степень .
Этап 3.1.2.1.1.3
Умножим на .
Этап 3.1.2.1.1.4
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 3.1.2.1.1.4.1
С помощью запишем в виде .
Этап 3.1.2.1.1.4.2
Применим правило степени и перемножим показатели, .
Этап 3.1.2.1.1.4.3
Объединим и .
Этап 3.1.2.1.1.4.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.1.2.1.1.4.4.1
Сократим общий множитель.
Этап 3.1.2.1.1.4.4.2
Перепишем это выражение.
Этап 3.1.2.1.1.4.5
Упростим.
Этап 3.1.2.1.1.5
Умножим на .
Этап 3.1.2.1.2
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 3.1.2.1.2.1
Вычтем из .
Этап 3.1.2.1.2.2
Добавим и .
Этап 3.2
Построим график каждой части уравнения. Решение — абсцисса (координата x) точки пересечения.
Этап 3.3
Заменим все вхождения на во всех уравнениях.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Заменим все вхождения в на .
Этап 3.3.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.1
Возведем в степень .
Этап 3.3.2.1.2
Добавим и .
Этап 3.3.2.1.3
Перепишем в виде .
Этап 3.3.2.1.4
Умножим.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.4.1
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 3.3.2.1.4.2
Умножим на .
Этап 4
Решение данной системы — полный набор упорядоченных пар, представляющих собой допустимые решения.
Этап 5
Результат можно представить в различном виде.
В виде точки:
Форма уравнения:
Этап 6