Введите задачу...
Основы мат. анализа Примеры
,
Этап 1
Этап 1.1
Разделим каждый член на .
Этап 1.2
Упростим левую часть.
Этап 1.2.1
Сократим общий множитель .
Этап 1.2.1.1
Сократим общий множитель.
Этап 1.2.1.2
Разделим на .
Этап 2
Этап 2.1
Заменим все вхождения в на .
Этап 2.2
Упростим левую часть.
Этап 2.2.1
Умножим .
Этап 2.2.1.1
Объединим и .
Этап 2.2.1.2
Умножим на .
Этап 3
Этап 3.1
Найдем НОК знаменателей членов уравнения.
Этап 3.1.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 3.1.2
НОК единицы и любого выражения есть это выражение.
Этап 3.2
Каждый член в умножим на , чтобы убрать дроби.
Этап 3.2.1
Умножим каждый член на .
Этап 3.2.2
Упростим левую часть.
Этап 3.2.2.1
Упростим каждый член.
Этап 3.2.2.1.1
Умножим на , сложив экспоненты.
Этап 3.2.2.1.1.1
Применим правило степени для объединения показателей.
Этап 3.2.2.1.1.2
Добавим и .
Этап 3.2.2.1.2
Сократим общий множитель .
Этап 3.2.2.1.2.1
Сократим общий множитель.
Этап 3.2.2.1.2.2
Перепишем это выражение.
Этап 3.2.3
Упростим правую часть.
Этап 3.2.3.1
Умножим на .
Этап 3.3
Решим уравнение.
Этап 3.3.1
Подставим в уравнение. Это упростит использование формулы для корней квадратного уравнения.
Этап 3.3.2
Разложим на множители, используя правило полных квадратов.
Этап 3.3.2.1
Перепишем в виде .
Этап 3.3.2.2
Проверим, чтобы средний член был равен удвоенному произведению корней из первого и третьего членов.
Этап 3.3.2.3
Перепишем многочлен.
Этап 3.3.2.4
Разложим на множители, используя правило выделения полного квадрата из квадратного трехчлена , где и .
Этап 3.3.3
Приравняем к .
Этап 3.3.4
Вычтем из обеих частей уравнения.
Этап 3.3.5
Подставим вещественное значение обратно в решенное уравнение.
Этап 3.3.6
Решим уравнение относительно .
Этап 3.3.6.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 3.3.6.2
Упростим .
Этап 3.3.6.2.1
Перепишем в виде .
Этап 3.3.6.2.2
Перепишем в виде .
Этап 3.3.6.2.3
Перепишем в виде .
Этап 3.3.6.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 3.3.6.3.1
Сначала с помощью положительного значения найдем первое решение.
Этап 3.3.6.3.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 3.3.6.3.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 4
Этап 4.1
Заменим все вхождения в на .
Этап 4.2
Упростим правую часть.
Этап 4.2.1
Упростим .
Этап 4.2.1.1
Упростим знаменатель.
Этап 4.2.1.1.1
Применим правило умножения к .
Этап 4.2.1.1.2
Перепишем в виде .
Этап 4.2.1.1.3
Перепишем в виде .
Этап 4.2.1.1.3.1
С помощью запишем в виде .
Этап 4.2.1.1.3.2
Применим правило степени и перемножим показатели, .
Этап 4.2.1.1.3.3
Объединим и .
Этап 4.2.1.1.3.4
Сократим общий множитель .
Этап 4.2.1.1.3.4.1
Сократим общий множитель.
Этап 4.2.1.1.3.4.2
Перепишем это выражение.
Этап 4.2.1.1.3.5
Найдем экспоненту.
Этап 4.2.1.2
Сократим выражение, путем отбрасывания общих множителей.
Этап 4.2.1.2.1
Умножим на .
Этап 4.2.1.2.2
Сократим общий множитель и .
Этап 4.2.1.2.2.1
Вынесем множитель из .
Этап 4.2.1.2.2.2
Сократим общие множители.
Этап 4.2.1.2.2.2.1
Вынесем множитель из .
Этап 4.2.1.2.2.2.2
Сократим общий множитель.
Этап 4.2.1.2.2.2.3
Перепишем это выражение.
Этап 4.2.1.2.3
Вынесем знак минуса перед дробью.
Этап 5
Этап 5.1
Заменим все вхождения в на .
Этап 5.2
Упростим правую часть.
Этап 5.2.1
Упростим .
Этап 5.2.1.1
Упростим знаменатель.
Этап 5.2.1.1.1
Применим правило умножения к .
Этап 5.2.1.1.2
Применим правило умножения к .
Этап 5.2.1.1.3
Возведем в степень .
Этап 5.2.1.1.4
Умножим на .
Этап 5.2.1.1.5
Перепишем в виде .
Этап 5.2.1.1.6
Перепишем в виде .
Этап 5.2.1.1.6.1
С помощью запишем в виде .
Этап 5.2.1.1.6.2
Применим правило степени и перемножим показатели, .
Этап 5.2.1.1.6.3
Объединим и .
Этап 5.2.1.1.6.4
Сократим общий множитель .
Этап 5.2.1.1.6.4.1
Сократим общий множитель.
Этап 5.2.1.1.6.4.2
Перепишем это выражение.
Этап 5.2.1.1.6.5
Найдем экспоненту.
Этап 5.2.1.2
Сократим выражение, путем отбрасывания общих множителей.
Этап 5.2.1.2.1
Умножим на .
Этап 5.2.1.2.2
Сократим общий множитель и .
Этап 5.2.1.2.2.1
Вынесем множитель из .
Этап 5.2.1.2.2.2
Сократим общие множители.
Этап 5.2.1.2.2.2.1
Вынесем множитель из .
Этап 5.2.1.2.2.2.2
Сократим общий множитель.
Этап 5.2.1.2.2.2.3
Перепишем это выражение.
Этап 5.2.1.2.3
Вынесем знак минуса перед дробью.
Этап 6
Перечислим все решения.
Этап 7