Основы мат. анализа Примеры

Этап 1
Упростим каждый член уравнения, чтобы правая часть была равна . Стандартная форма уравнения эллипса или гиперболы требует, чтобы правая часть уравнения была равна .
Этап 2
Это формула эллипса. Используем эту формулу для определения центра, большой и малой осей эллипса.
Этап 3
Сопоставим параметры эллипса со значениями в стандартной форме. Переменная представляет большую ось эллипса,  — малую ось,  — сдвиг по оси X от начала координат, а  — сдвиг по оси Y от начала координат.
Этап 4
Центр эллипса имеет вид . Подставим значения и .
Этап 5
Найдем , расстояние от центра до фокуса.
Нажмите для увеличения количества этапов...
Этап 5.1
Найдем расстояние от центра до фокуса эллипса, используя следующую формулу.
Этап 5.2
Подставим значения и в формулу.
Этап 5.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 5.3.1.1
Применим правило умножения к .
Этап 5.3.1.2
Возведем в степень .
Этап 5.3.2
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 5.3.2.1
С помощью запишем в виде .
Этап 5.3.2.2
Применим правило степени и перемножим показатели, .
Этап 5.3.2.3
Объединим и .
Этап 5.3.2.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.2.4.1
Сократим общий множитель.
Этап 5.3.2.4.2
Перепишем это выражение.
Этап 5.3.2.5
Найдем экспоненту.
Этап 5.3.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 5.3.3.1
Умножим на .
Этап 5.3.3.2
Возведем в степень .
Этап 5.3.3.3
Умножим на .
Этап 5.3.3.4
Вычтем из .
Этап 5.3.3.5
Перепишем в виде .
Этап 5.3.3.6
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 6
Найдем вершины.
Нажмите для увеличения количества этапов...
Этап 6.1
Первую вершину эллипса можно найти, добавив к .
Этап 6.2
Подставим известные значения , и в формулу.
Этап 6.3
Упростим.
Этап 6.4
The second vertex of an ellipse can be found by subtracting from .
Этап 6.5
Подставим известные значения , и в формулу.
Этап 6.6
Упростим.
Этап 6.7
Эллипсы имеют две вершины.
:
:
:
:
Этап 7
Найдем фокусы.
Нажмите для увеличения количества этапов...
Этап 7.1
Первый фокус эллипса можно найти, добавив к .
Этап 7.2
Подставим известные значения , и в формулу.
Этап 7.3
Упростим.
Этап 7.4
Первый фокус эллипса можно найти, вычтя из .
Этап 7.5
Подставим известные значения , и в формулу.
Этап 7.6
Упростим.
Этап 7.7
Эллипсы имеют два фокуса.
:
:
:
:
Этап 8
Найдем эксцентриситет.
Нажмите для увеличения количества этапов...
Этап 8.1
Найдем эксцентриситет по приведенной ниже формуле.
Этап 8.2
Подставим значения и в формулу.
Этап 8.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 8.3.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 8.3.1.1
Применим правило умножения к .
Этап 8.3.1.2
Возведем в степень .
Этап 8.3.1.3
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 8.3.1.3.1
С помощью запишем в виде .
Этап 8.3.1.3.2
Применим правило степени и перемножим показатели, .
Этап 8.3.1.3.3
Объединим и .
Этап 8.3.1.3.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.3.1.3.4.1
Сократим общий множитель.
Этап 8.3.1.3.4.2
Перепишем это выражение.
Этап 8.3.1.3.5
Найдем экспоненту.
Этап 8.3.1.4
Умножим на .
Этап 8.3.1.5
Возведем в степень .
Этап 8.3.1.6
Умножим на .
Этап 8.3.1.7
Вычтем из .
Этап 8.3.1.8
Перепишем в виде .
Этап 8.3.1.9
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 8.3.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 8.3.2.1
Вынесем множитель из .
Этап 8.3.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 8.3.2.2.1
Вынесем множитель из .
Этап 8.3.2.2.2
Сократим общий множитель.
Этап 8.3.2.2.3
Перепишем это выражение.
Этап 8.3.3
Умножим на .
Этап 8.3.4
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 8.3.4.1
Умножим на .
Этап 8.3.4.2
Возведем в степень .
Этап 8.3.4.3
Возведем в степень .
Этап 8.3.4.4
Применим правило степени для объединения показателей.
Этап 8.3.4.5
Добавим и .
Этап 8.3.4.6
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 8.3.4.6.1
С помощью запишем в виде .
Этап 8.3.4.6.2
Применим правило степени и перемножим показатели, .
Этап 8.3.4.6.3
Объединим и .
Этап 8.3.4.6.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.3.4.6.4.1
Сократим общий множитель.
Этап 8.3.4.6.4.2
Перепишем это выражение.
Этап 8.3.4.6.5
Найдем экспоненту.
Этап 9
Эти значения представляются важными для построения графика и анализа эллипса.
Центр:
:
:
:
:
Эксцентриситет:
Этап 10