Основы мат. анализа Примеры

Этап 1
Найдем стандартную форму уравнения эллипса.
Нажмите для увеличения количества этапов...
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Составим полный квадрат для .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Применим форму , чтобы найти значения , и .
Этап 1.2.2
Рассмотрим параболу в форме с выделенной вершиной.
Этап 1.2.3
Найдем значение по формуле .
Нажмите для увеличения количества этапов...
Этап 1.2.3.1
Подставим значения и в формулу .
Этап 1.2.3.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.3.2.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.2.3.2.1.1
Вынесем множитель из .
Этап 1.2.3.2.1.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.2.3.2.1.2.1
Вынесем множитель из .
Этап 1.2.3.2.1.2.2
Сократим общий множитель.
Этап 1.2.3.2.1.2.3
Перепишем это выражение.
Этап 1.2.3.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.3.2.2.1
Сократим общий множитель.
Этап 1.2.3.2.2.2
Перепишем это выражение.
Этап 1.2.4
Найдем значение по формуле .
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Подставим значения , и в формулу .
Этап 1.2.4.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.1.1
Возведем в степень .
Этап 1.2.4.2.1.2
Умножим на .
Этап 1.2.4.2.1.3
Разделим на .
Этап 1.2.4.2.1.4
Умножим на .
Этап 1.2.4.2.2
Вычтем из .
Этап 1.2.5
Подставим значения , и в уравнение с заданной вершиной .
Этап 1.3
Подставим вместо в уравнение .
Этап 1.4
Перенесем в правую часть уравнения, прибавив к обеим частям.
Этап 1.5
Составим полный квадрат для .
Нажмите для увеличения количества этапов...
Этап 1.5.1
Применим форму , чтобы найти значения , и .
Этап 1.5.2
Рассмотрим параболу в форме с выделенной вершиной.
Этап 1.5.3
Найдем значение по формуле .
Нажмите для увеличения количества этапов...
Этап 1.5.3.1
Подставим значения и в формулу .
Этап 1.5.3.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.5.3.2.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.5.3.2.1.1
Вынесем множитель из .
Этап 1.5.3.2.1.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.5.3.2.1.2.1
Вынесем множитель из .
Этап 1.5.3.2.1.2.2
Сократим общий множитель.
Этап 1.5.3.2.1.2.3
Перепишем это выражение.
Этап 1.5.3.2.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.5.3.2.2.1
Вынесем множитель из .
Этап 1.5.3.2.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.5.3.2.2.2.1
Вынесем множитель из .
Этап 1.5.3.2.2.2.2
Сократим общий множитель.
Этап 1.5.3.2.2.2.3
Перепишем это выражение.
Этап 1.5.3.2.2.2.4
Разделим на .
Этап 1.5.4
Найдем значение по формуле .
Нажмите для увеличения количества этапов...
Этап 1.5.4.1
Подставим значения , и в формулу .
Этап 1.5.4.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.5.4.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.5.4.2.1.1
Возведем в степень .
Этап 1.5.4.2.1.2
Умножим на .
Этап 1.5.4.2.1.3
Разделим на .
Этап 1.5.4.2.1.4
Умножим на .
Этап 1.5.4.2.2
Вычтем из .
Этап 1.5.5
Подставим значения , и в уравнение с заданной вершиной .
Этап 1.6
Подставим вместо в уравнение .
Этап 1.7
Перенесем в правую часть уравнения, прибавив к обеим частям.
Этап 1.8
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.8.1
Добавим и .
Этап 1.8.2
Добавим и .
Этап 1.9
Упростим каждый член уравнения, чтобы правая часть была равна . Стандартная форма уравнения эллипса или гиперболы требует, чтобы правая часть уравнения была равна .
Этап 2
Это формула эллипса. Используем эту формулу для определения центра, большой и малой осей эллипса.
Этап 3
Сопоставим параметры эллипса со значениями в стандартной форме. Переменная представляет большую ось эллипса,  — малую ось,  — сдвиг по оси X от начала координат, а  — сдвиг по оси Y от начала координат.
Этап 4
Центр эллипса имеет вид . Подставим значения и .
Этап 5
Найдем , расстояние от центра до фокуса.
Нажмите для увеличения количества этапов...
Этап 5.1
Найдем расстояние от центра до фокуса эллипса, используя следующую формулу.
Этап 5.2
Подставим значения и в формулу.
Этап 5.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Применим правило умножения к .
Этап 5.3.2
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 5.3.2.1
С помощью запишем в виде .
Этап 5.3.2.2
Применим правило степени и перемножим показатели, .
Этап 5.3.2.3
Объединим и .
Этап 5.3.2.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.2.4.1
Сократим общий множитель.
Этап 5.3.2.4.2
Перепишем это выражение.
Этап 5.3.2.5
Найдем экспоненту.
Этап 5.3.3
Возведем в степень .
Этап 5.3.4
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 5.3.4.1
Вынесем множитель из .
Этап 5.3.4.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 5.3.4.2.1
Вынесем множитель из .
Этап 5.3.4.2.2
Сократим общий множитель.
Этап 5.3.4.2.3
Перепишем это выражение.
Этап 5.3.5
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 5.3.5.1
Применим правило умножения к .
Этап 5.3.5.2
Единица в любой степени равна единице.
Этап 5.3.5.3
Возведем в степень .
Этап 5.3.6
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5.3.7
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5.3.8
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.8.1
Умножим на .
Этап 5.3.8.2
Умножим на .
Этап 5.3.8.3
Умножим на .
Этап 5.3.8.4
Умножим на .
Этап 5.3.9
Объединим числители над общим знаменателем.
Этап 5.3.10
Вычтем из .
Этап 5.3.11
Перепишем в виде .
Этап 5.3.12
Любой корень из равен .
Этап 5.3.13
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 5.3.13.1
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 5.3.13.1.1
Вынесем множитель из .
Этап 5.3.13.1.2
Перепишем в виде .
Этап 5.3.13.2
Вынесем члены из-под знака корня.
Этап 5.3.14
Умножим на .
Этап 5.3.15
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 5.3.15.1
Умножим на .
Этап 5.3.15.2
Перенесем .
Этап 5.3.15.3
Возведем в степень .
Этап 5.3.15.4
Возведем в степень .
Этап 5.3.15.5
Применим правило степени для объединения показателей.
Этап 5.3.15.6
Добавим и .
Этап 5.3.15.7
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 5.3.15.7.1
С помощью запишем в виде .
Этап 5.3.15.7.2
Применим правило степени и перемножим показатели, .
Этап 5.3.15.7.3
Объединим и .
Этап 5.3.15.7.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.15.7.4.1
Сократим общий множитель.
Этап 5.3.15.7.4.2
Перепишем это выражение.
Этап 5.3.15.7.5
Найдем экспоненту.
Этап 5.3.16
Умножим на .
Этап 6
Найдем вершины.
Нажмите для увеличения количества этапов...
Этап 6.1
Первую вершину эллипса можно найти, добавив к .
Этап 6.2
Подставим известные значения , и в формулу.
Этап 6.3
The second vertex of an ellipse can be found by subtracting from .
Этап 6.4
Подставим известные значения , и в формулу.
Этап 6.5
Упростим.
Этап 6.6
Эллипсы имеют две вершины.
:
:
:
:
Этап 7
Найдем фокусы.
Нажмите для увеличения количества этапов...
Этап 7.1
Первый фокус эллипса можно найти, добавив к .
Этап 7.2
Подставим известные значения , и в формулу.
Этап 7.3
Первый фокус эллипса можно найти, вычтя из .
Этап 7.4
Подставим известные значения , и в формулу.
Этап 7.5
Упростим.
Этап 7.6
Эллипсы имеют два фокуса.
:
:
:
:
Этап 8
Найдем эксцентриситет.
Нажмите для увеличения количества этапов...
Этап 8.1
Найдем эксцентриситет по приведенной ниже формуле.
Этап 8.2
Подставим значения и в формулу.
Этап 8.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 8.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 8.3.2
Применим правило умножения к .
Этап 8.3.3
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 8.3.3.1
С помощью запишем в виде .
Этап 8.3.3.2
Применим правило степени и перемножим показатели, .
Этап 8.3.3.3
Объединим и .
Этап 8.3.3.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.3.3.4.1
Сократим общий множитель.
Этап 8.3.3.4.2
Перепишем это выражение.
Этап 8.3.3.5
Найдем экспоненту.
Этап 8.3.4
Возведем в степень .
Этап 8.3.5
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 8.3.5.1
Вынесем множитель из .
Этап 8.3.5.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 8.3.5.2.1
Вынесем множитель из .
Этап 8.3.5.2.2
Сократим общий множитель.
Этап 8.3.5.2.3
Перепишем это выражение.
Этап 8.3.6
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 8.3.6.1
Применим правило умножения к .
Этап 8.3.6.2
Единица в любой степени равна единице.
Этап 8.3.6.3
Возведем в степень .
Этап 8.3.7
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 8.3.8
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 8.3.9
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 8.3.9.1
Умножим на .
Этап 8.3.9.2
Умножим на .
Этап 8.3.9.3
Умножим на .
Этап 8.3.9.4
Умножим на .
Этап 8.3.10
Объединим числители над общим знаменателем.
Этап 8.3.11
Вычтем из .
Этап 8.3.12
Перепишем в виде .
Этап 8.3.13
Любой корень из равен .
Этап 8.3.14
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 8.3.14.1
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 8.3.14.1.1
Вынесем множитель из .
Этап 8.3.14.1.2
Перепишем в виде .
Этап 8.3.14.2
Вынесем члены из-под знака корня.
Этап 8.3.15
Умножим на .
Этап 8.3.16
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 8.3.16.1
Умножим на .
Этап 8.3.16.2
Перенесем .
Этап 8.3.16.3
Возведем в степень .
Этап 8.3.16.4
Возведем в степень .
Этап 8.3.16.5
Применим правило степени для объединения показателей.
Этап 8.3.16.6
Добавим и .
Этап 8.3.16.7
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 8.3.16.7.1
С помощью запишем в виде .
Этап 8.3.16.7.2
Применим правило степени и перемножим показатели, .
Этап 8.3.16.7.3
Объединим и .
Этап 8.3.16.7.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.3.16.7.4.1
Сократим общий множитель.
Этап 8.3.16.7.4.2
Перепишем это выражение.
Этап 8.3.16.7.5
Найдем экспоненту.
Этап 8.3.17
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.3.17.1
Сократим общий множитель.
Этап 8.3.17.2
Перепишем это выражение.
Этап 8.3.18
Умножим на .
Этап 8.3.19
Объединим и .
Этап 8.3.20
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 8.3.20.1
Вынесем множитель из .
Этап 8.3.20.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 8.3.20.2.1
Вынесем множитель из .
Этап 8.3.20.2.2
Сократим общий множитель.
Этап 8.3.20.2.3
Перепишем это выражение.
Этап 9
Эти значения представляются важными для построения графика и анализа эллипса.
Центр:
:
:
:
:
Эксцентриситет:
Этап 10