Введите задачу...
Основы мат. анализа Примеры
Этап 1
Этап 1.1
Перепишем.
Этап 1.2
Перепишем в виде .
Этап 1.3
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 1.3.1
Применим свойство дистрибутивности.
Этап 1.3.2
Применим свойство дистрибутивности.
Этап 1.3.3
Применим свойство дистрибутивности.
Этап 1.4
Упростим и объединим подобные члены.
Этап 1.4.1
Упростим каждый член.
Этап 1.4.1.1
Умножим на .
Этап 1.4.1.2
Перенесем влево от .
Этап 1.4.1.3
Перепишем в виде .
Этап 1.4.1.4
Перепишем в виде .
Этап 1.4.1.5
Умножим на .
Этап 1.4.2
Вычтем из .
Этап 1.5
Применим свойство дистрибутивности.
Этап 1.6
Упростим.
Этап 1.6.1
Объединим и .
Этап 1.6.2
Сократим общий множитель .
Этап 1.6.2.1
Вынесем множитель из .
Этап 1.6.2.2
Сократим общий множитель.
Этап 1.6.2.3
Перепишем это выражение.
Этап 1.6.3
Умножим на .
Этап 2
Этап 2.1
Добавим к обеим частям уравнения.
Этап 2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.3
Объединим и .
Этап 2.4
Объединим числители над общим знаменателем.
Этап 2.5
Упростим числитель.
Этап 2.5.1
Умножим на .
Этап 2.5.2
Добавим и .
Этап 3
Этап 3.1
Перепишем уравнение в форме с выделенной вершиной.
Этап 3.1.1
Составим полный квадрат для .
Этап 3.1.1.1
Применим форму , чтобы найти значения , и .
Этап 3.1.1.2
Рассмотрим параболу в форме с выделенной вершиной.
Этап 3.1.1.3
Найдем значение по формуле .
Этап 3.1.1.3.1
Подставим значения и в формулу .
Этап 3.1.1.3.2
Упростим правую часть.
Этап 3.1.1.3.2.1
Объединим и .
Этап 3.1.1.3.2.2
Разделим на .
Этап 3.1.1.3.2.3
Разделим на .
Этап 3.1.1.4
Найдем значение по формуле .
Этап 3.1.1.4.1
Подставим значения , и в формулу .
Этап 3.1.1.4.2
Упростим правую часть.
Этап 3.1.1.4.2.1
Упростим каждый член.
Этап 3.1.1.4.2.1.1
Возведем в степень .
Этап 3.1.1.4.2.1.2
Объединим и .
Этап 3.1.1.4.2.1.3
Разделим на .
Этап 3.1.1.4.2.2
Объединим числители над общим знаменателем.
Этап 3.1.1.4.2.3
Вычтем из .
Этап 3.1.1.4.2.4
Разделим на .
Этап 3.1.1.5
Подставим значения , и в уравнение с заданной вершиной .
Этап 3.1.2
Приравняем к новой правой части.
Этап 3.2
Воспользуемся формой с выделенной вершиной , чтобы определить значения , и .
Этап 3.3
Поскольку имеет положительное значение, ветви параболы направлены вправо.
вправо
Этап 3.4
Найдем вершину .
Этап 3.5
Найдем , расстояние от вершины до фокуса.
Этап 3.5.1
Найдем расстояние от вершины до фокуса параболы, используя следующую формулу.
Этап 3.5.2
Подставим значение в формулу.
Этап 3.5.3
Упростим.
Этап 3.5.3.1
Объединим и .
Этап 3.5.3.2
Разделим на .
Этап 3.6
Найдем фокус.
Этап 3.6.1
Фокус параболы можно найти, добавив к координате x , если ветви параболы направлены влево или вправо.
Этап 3.6.2
Подставим известные значения , и в формулу и упростим.
Этап 3.7
Найдем ось симметрии, то есть линию, которая проходит через вершину и фокус.
Этап 3.8
Найдем направляющую.
Этап 3.8.1
Директриса параболы ― это вертикальная прямая, которую можно найти вычитанием из x-координаты вершины , если ветви параболы направлены влево или вправо.
Этап 3.8.2
Подставим известные значения и в формулу и упростим.
Этап 3.9
Используем свойства параболы для анализа и построения ее графика.
Направление ветвей: вправо
Вершина:
Фокус:
Ось симметрии:
Директриса:
Направление ветвей: вправо
Вершина:
Фокус:
Ось симметрии:
Директриса:
Этап 4
Этап 4.1
Подставим значение в . В данном случае получится точка .
Этап 4.1.1
Заменим в этом выражении переменную на .
Этап 4.1.2
Упростим результат.
Этап 4.1.2.1
Упростим каждый член.
Этап 4.1.2.1.1
Вычтем из .
Этап 4.1.2.1.2
Умножим на .
Этап 4.1.2.2
Окончательный ответ: .
Этап 4.1.3
Преобразуем в десятичное представление.
Этап 4.2
Подставим значение в . В данном случае получится точка .
Этап 4.2.1
Заменим в этом выражении переменную на .
Этап 4.2.2
Упростим результат.
Этап 4.2.2.1
Упростим каждый член.
Этап 4.2.2.1.1
Вычтем из .
Этап 4.2.2.1.2
Умножим на .
Этап 4.2.2.2
Окончательный ответ: .
Этап 4.2.3
Преобразуем в десятичное представление.
Этап 4.3
Подставим значение в . В данном случае получится точка .
Этап 4.3.1
Заменим в этом выражении переменную на .
Этап 4.3.2
Упростим результат.
Этап 4.3.2.1
Упростим каждый член.
Этап 4.3.2.1.1
Вычтем из .
Этап 4.3.2.1.2
Умножим на .
Этап 4.3.2.1.3
Перепишем в виде .
Этап 4.3.2.1.4
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 4.3.2.2
Добавим и .
Этап 4.3.2.3
Окончательный ответ: .
Этап 4.3.3
Преобразуем в десятичное представление.
Этап 4.4
Подставим значение в . В данном случае получится точка .
Этап 4.4.1
Заменим в этом выражении переменную на .
Этап 4.4.2
Упростим результат.
Этап 4.4.2.1
Упростим каждый член.
Этап 4.4.2.1.1
Вычтем из .
Этап 4.4.2.1.2
Умножим на .
Этап 4.4.2.1.3
Перепишем в виде .
Этап 4.4.2.1.4
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 4.4.2.1.5
Умножим на .
Этап 4.4.2.2
Добавим и .
Этап 4.4.2.3
Окончательный ответ: .
Этап 4.4.3
Преобразуем в десятичное представление.
Этап 4.5
Построим график параболы, используя ее свойства и выбранные точки.
Этап 5
Построим график параболы, используя ее свойства и выбранные точки.
Направление ветвей: вправо
Вершина:
Фокус:
Ось симметрии:
Директриса:
Этап 6