Введите задачу...
Основы мат. анализа Примеры
Этап 1
Чтобы найти угла между осью x и прямой, соединяющей точки и , нарисуем треугольник с вершинами в точках , и .
Противоположное:
Смежный:
Этап 2
Этап 2.1
Применим правило умножения к .
Этап 2.2
Возведем в степень .
Этап 2.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.4
Объединим и .
Этап 2.5
Объединим числители над общим знаменателем.
Этап 2.6
Перепишем в разложенном на множители виде.
Этап 2.6.1
Перенесем влево от .
Этап 2.6.2
Добавим и .
Этап 2.7
Перепишем в виде .
Этап 2.8
Упростим числитель.
Этап 2.8.1
Изменим порядок и .
Этап 2.8.2
Вынесем члены из-под знака корня.
Этап 2.9
Упростим знаменатель.
Этап 2.9.1
Перепишем в виде .
Этап 2.9.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 3
, следовательно .
Этап 4
Этап 4.1
Умножим числитель на величину, обратную знаменателю.
Этап 4.2
Сократим общий множитель .
Этап 4.2.1
Вынесем множитель из .
Этап 4.2.2
Сократим общий множитель.
Этап 4.2.3
Перепишем это выражение.
Этап 4.3
Умножим на .
Этап 4.4
Объединим и упростим знаменатель.
Этап 4.4.1
Умножим на .
Этап 4.4.2
Возведем в степень .
Этап 4.4.3
Возведем в степень .
Этап 4.4.4
Применим правило степени для объединения показателей.
Этап 4.4.5
Добавим и .
Этап 4.4.6
Перепишем в виде .
Этап 4.4.6.1
С помощью запишем в виде .
Этап 4.4.6.2
Применим правило степени и перемножим показатели, .
Этап 4.4.6.3
Объединим и .
Этап 4.4.6.4
Сократим общий множитель .
Этап 4.4.6.4.1
Сократим общий множитель.
Этап 4.4.6.4.2
Перепишем это выражение.
Этап 4.4.6.5
Найдем экспоненту.
Этап 5
Аппроксимируем результат.