Введите задачу...
Основы мат. анализа Примеры
Этап 1
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 2
Этап 2.1
Вычтем из обеих частей неравенства.
Этап 2.2
Разделим каждый член на и упростим.
Этап 2.2.1
Разделим каждый член на . При умножении или делении обеих частей неравенства на отрицательное значение заменим знак неравенства на противоположный.
Этап 2.2.2
Упростим левую часть.
Этап 2.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 2.2.2.2
Разделим на .
Этап 2.2.3
Упростим правую часть.
Этап 2.2.3.1
Разделим на .
Этап 3
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 4
Этап 4.1
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4.2
Приравняем к , затем решим относительно .
Этап 4.2.1
Приравняем к .
Этап 4.2.2
Вычтем из обеих частей уравнения.
Этап 4.3
Приравняем к , затем решим относительно .
Этап 4.3.1
Приравняем к .
Этап 4.3.2
Решим относительно .
Этап 4.3.2.1
Вычтем из обеих частей уравнения.
Этап 4.3.2.2
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 4.3.2.3
Перепишем в виде .
Этап 4.3.2.4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 4.3.2.4.1
Сначала с помощью положительного значения найдем первое решение.
Этап 4.3.2.4.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 4.3.2.4.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 4.4
Окончательным решением являются все значения, при которых верно.
Этап 5
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества:
Этап 6