Введите задачу...
Основы мат. анализа Примеры
,
Этап 1
Этап 1.1
Заменим все вхождения в на .
Этап 1.2
Упростим левую часть.
Этап 1.2.1
Упростим .
Этап 1.2.1.1
Упростим каждый член.
Этап 1.2.1.1.1
Перепишем в виде .
Этап 1.2.1.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 1.2.1.1.2.1
Применим свойство дистрибутивности.
Этап 1.2.1.1.2.2
Применим свойство дистрибутивности.
Этап 1.2.1.1.2.3
Применим свойство дистрибутивности.
Этап 1.2.1.1.3
Упростим и объединим подобные члены.
Этап 1.2.1.1.3.1
Упростим каждый член.
Этап 1.2.1.1.3.1.1
Умножим на , сложив экспоненты.
Этап 1.2.1.1.3.1.1.1
Применим правило степени для объединения показателей.
Этап 1.2.1.1.3.1.1.2
Добавим и .
Этап 1.2.1.1.3.1.2
Перенесем влево от .
Этап 1.2.1.1.3.1.3
Умножим на .
Этап 1.2.1.1.3.2
Вычтем из .
Этап 1.2.1.1.4
Применим свойство дистрибутивности.
Этап 1.2.1.1.5
Упростим.
Этап 1.2.1.1.5.1
Умножим на .
Этап 1.2.1.1.5.2
Умножим на .
Этап 1.2.1.2
Вычтем из .
Этап 2
Этап 2.1
Подставим в уравнение. Это упростит использование формулы для корней квадратного уравнения.
Этап 2.2
Вычтем из обеих частей уравнения.
Этап 2.3
Объединим противоположные члены в .
Этап 2.3.1
Вычтем из .
Этап 2.3.2
Добавим и .
Этап 2.4
Вынесем множитель из .
Этап 2.4.1
Вынесем множитель из .
Этап 2.4.2
Вынесем множитель из .
Этап 2.4.3
Вынесем множитель из .
Этап 2.5
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.6
Приравняем к .
Этап 2.7
Приравняем к , затем решим относительно .
Этап 2.7.1
Приравняем к .
Этап 2.7.2
Добавим к обеим частям уравнения.
Этап 2.8
Окончательным решением являются все значения, при которых верно.
Этап 2.9
Подставим вещественное значение обратно в решенное уравнение.
Этап 2.10
Решим первое уравнение относительно .
Этап 2.11
Решим уравнение относительно .
Этап 2.11.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 2.11.2
Упростим .
Этап 2.11.2.1
Перепишем в виде .
Этап 2.11.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.11.2.3
Плюс или минус равно .
Этап 2.12
Решим второе уравнение относительно .
Этап 2.13
Решим уравнение относительно .
Этап 2.13.1
Избавимся от скобок.
Этап 2.13.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 2.13.3
Упростим .
Этап 2.13.3.1
Перепишем в виде .
Этап 2.13.3.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.13.4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2.13.4.1
Сначала с помощью положительного значения найдем первое решение.
Этап 2.13.4.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 2.13.4.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2.14
Решением является .
Этап 3
Этап 3.1
Заменим все вхождения в на .
Этап 3.2
Упростим правую часть.
Этап 3.2.1
Упростим .
Этап 3.2.1.1
Возведение в любую положительную степень дает .
Этап 3.2.1.2
Вычтем из .
Этап 4
Этап 4.1
Заменим все вхождения в на .
Этап 4.2
Упростим правую часть.
Этап 4.2.1
Упростим .
Этап 4.2.1.1
Возведем в степень .
Этап 4.2.1.2
Вычтем из .
Этап 5
Этап 5.1
Заменим все вхождения в на .
Этап 5.2
Упростим правую часть.
Этап 5.2.1
Упростим .
Этап 5.2.1.1
Возведение в любую положительную степень дает .
Этап 5.2.1.2
Вычтем из .
Этап 6
Этап 6.1
Заменим все вхождения в на .
Этап 6.2
Упростим правую часть.
Этап 6.2.1
Упростим .
Этап 6.2.1.1
Возведем в степень .
Этап 6.2.1.2
Вычтем из .
Этап 7
Этап 7.1
Заменим все вхождения в на .
Этап 7.2
Упростим правую часть.
Этап 7.2.1
Упростим .
Этап 7.2.1.1
Возведем в степень .
Этап 7.2.1.2
Вычтем из .
Этап 8
Решение данной системы — полный набор упорядоченных пар, представляющих собой допустимые решения.
Этап 9
Результат можно представить в различном виде.
В виде точки:
Форма уравнения:
Этап 10