Основы мат. анализа Примеры

Решить с помощью замены y=4-x^2 , y=x^2-4
,
Этап 1
Исключим равные части каждого уравнения и объединим.
Этап 2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Вычтем из обеих частей уравнения.
Этап 2.1.2
Вычтем из .
Этап 2.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Вычтем из обеих частей уравнения.
Этап 2.2.2
Вычтем из .
Этап 2.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Разделим каждый член на .
Этап 2.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1.1
Сократим общий множитель.
Этап 2.3.2.1.2
Разделим на .
Этап 2.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Разделим на .
Этап 2.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 2.5
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.5.1
Перепишем в виде .
Этап 2.5.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.6
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 2.6.1
Сначала с помощью положительного значения найдем первое решение.
Этап 2.6.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 2.6.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 3
Вычислим , когда .
Нажмите для увеличения количества этапов...
Этап 3.1
Подставим вместо .
Этап 3.2
Подставим вместо в и решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Избавимся от скобок.
Этап 3.2.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Возведем в степень .
Этап 3.2.2.2
Вычтем из .
Этап 4
Решение данной системы — полный набор упорядоченных пар, представляющих собой допустимые решения.
Этап 5
Результат можно представить в различном виде.
В виде точки:
Форма уравнения:
Этап 6