Введите задачу...
Основы мат. анализа Примеры
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Этап 2.1
Упростим каждый член.
Этап 2.1.1
Применим свойство дистрибутивности.
Этап 2.1.2
Умножим на .
Этап 2.1.3
Умножим на .
Этап 2.1.4
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 2.1.4.1
Применим свойство дистрибутивности.
Этап 2.1.4.2
Применим свойство дистрибутивности.
Этап 2.1.4.3
Применим свойство дистрибутивности.
Этап 2.1.5
Упростим и объединим подобные члены.
Этап 2.1.5.1
Упростим каждый член.
Этап 2.1.5.1.1
Умножим на , сложив экспоненты.
Этап 2.1.5.1.1.1
Перенесем .
Этап 2.1.5.1.1.2
Умножим на .
Этап 2.1.5.1.2
Умножим на .
Этап 2.1.5.1.3
Умножим на .
Этап 2.1.5.2
Добавим и .
Этап 2.2
Добавим и .
Этап 2.3
Добавим и .
Этап 3
Этап 3.1
Вынесем множитель из .
Этап 3.2
Вынесем множитель из .
Этап 3.3
Вынесем множитель из .
Этап 3.4
Вынесем множитель из .
Этап 3.5
Вынесем множитель из .
Этап 4
Этап 4.1
Разложим на множители методом группировки
Этап 4.1.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 4.1.1.1
Вынесем множитель из .
Этап 4.1.1.2
Запишем как плюс
Этап 4.1.1.3
Применим свойство дистрибутивности.
Этап 4.1.1.4
Умножим на .
Этап 4.1.2
Вынесем наибольший общий делитель из каждой группы.
Этап 4.1.2.1
Сгруппируем первые два члена и последние два члена.
Этап 4.1.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 4.1.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 4.2
Избавимся от ненужных скобок.
Этап 5
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 6
Этап 6.1
Приравняем к .
Этап 6.2
Решим относительно .
Этап 6.2.1
Вычтем из обеих частей уравнения.
Этап 6.2.2
Разделим каждый член на и упростим.
Этап 6.2.2.1
Разделим каждый член на .
Этап 6.2.2.2
Упростим левую часть.
Этап 6.2.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 6.2.2.2.2
Разделим на .
Этап 6.2.2.3
Упростим правую часть.
Этап 6.2.2.3.1
Разделим на .
Этап 7
Этап 7.1
Приравняем к .
Этап 7.2
Вычтем из обеих частей уравнения.
Этап 8
Окончательным решением являются все значения, при которых верно.