Введите задачу...
Основы мат. анализа Примеры
Этап 1
Этап 1.1
Разложим на множители методом группировки
Этап 1.1.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 1.1.1.1
Вынесем множитель из .
Этап 1.1.1.2
Запишем как плюс
Этап 1.1.1.3
Применим свойство дистрибутивности.
Этап 1.1.1.4
Умножим на .
Этап 1.1.2
Вынесем наибольший общий делитель из каждой группы.
Этап 1.1.2.1
Сгруппируем первые два члена и последние два члена.
Этап 1.1.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 1.1.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 1.2
Для каждого множителя в знаменателе создадим новую дробь, используя множитель в качестве знаменателя, а неизвестное значение — в качестве числителя. Поскольку множитель в знаменателе линейный, поместим одну переменную на его место .
Этап 1.3
Для каждого множителя в знаменателе создадим новую дробь, используя множитель в качестве знаменателя, а неизвестное значение — в качестве числителя. Поскольку множитель в знаменателе линейный, поместим одну переменную на его место .
Этап 1.4
Умножим каждую дробь в уравнении на знаменатель исходного выражения. В этом случае знаменатель равен .
Этап 1.5
Сократим общий множитель .
Этап 1.5.1
Сократим общий множитель.
Этап 1.5.2
Перепишем это выражение.
Этап 1.6
Сократим общий множитель .
Этап 1.6.1
Сократим общий множитель.
Этап 1.6.2
Разделим на .
Этап 1.7
Упростим каждый член.
Этап 1.7.1
Сократим общий множитель .
Этап 1.7.1.1
Сократим общий множитель.
Этап 1.7.1.2
Разделим на .
Этап 1.7.2
Применим свойство дистрибутивности.
Этап 1.7.3
Перенесем влево от .
Этап 1.7.4
Сократим общий множитель .
Этап 1.7.4.1
Сократим общий множитель.
Этап 1.7.4.2
Разделим на .
Этап 1.7.5
Применим свойство дистрибутивности.
Этап 1.7.6
Перепишем, используя свойство коммутативности умножения.
Этап 1.7.7
Умножим на .
Этап 1.8
Упростим выражение.
Этап 1.8.1
Перенесем .
Этап 1.8.2
Перенесем .
Этап 2
Этап 2.1
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты из каждой части уравнения. Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 2.2
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты членов, не содержащих . Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 2.3
Составим систему уравнений, чтобы найти коэффициенты элементарных дробей.
Этап 3
Этап 3.1
Решим относительно в .
Этап 3.1.1
Перепишем уравнение в виде .
Этап 3.1.2
Вычтем из обеих частей уравнения.
Этап 3.2
Заменим все вхождения на во всех уравнениях.
Этап 3.2.1
Заменим все вхождения в на .
Этап 3.2.2
Упростим правую часть.
Этап 3.2.2.1
Упростим .
Этап 3.2.2.1.1
Умножим на .
Этап 3.2.2.1.2
Добавим и .
Этап 3.3
Решим относительно в .
Этап 3.3.1
Перепишем уравнение в виде .
Этап 3.3.2
Разделим каждый член на и упростим.
Этап 3.3.2.1
Разделим каждый член на .
Этап 3.3.2.2
Упростим левую часть.
Этап 3.3.2.2.1
Сократим общий множитель .
Этап 3.3.2.2.1.1
Сократим общий множитель.
Этап 3.3.2.2.1.2
Разделим на .
Этап 3.4
Заменим все вхождения на во всех уравнениях.
Этап 3.4.1
Заменим все вхождения в на .
Этап 3.4.2
Упростим правую часть.
Этап 3.4.2.1
Упростим .
Этап 3.4.2.1.1
Умножим .
Этап 3.4.2.1.1.1
Объединим и .
Этап 3.4.2.1.1.2
Умножим на .
Этап 3.4.2.1.2
Вынесем знак минуса перед дробью.
Этап 3.5
Перечислим все решения.
Этап 4
Заменим каждый коэффициент элементарной дроби в значениями, найденными для и .