Основы мат. анализа Примеры

Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.1
Разделим каждый член на .
Этап 2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Сократим общий множитель.
Этап 2.2.1.2
Разделим на .
Этап 2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Вынесем знак минуса перед дробью.
Этап 2.3.1.2
Деление двух отрицательных значений дает положительное значение.
Этап 3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 4
Упростим .
Нажмите для увеличения количества этапов...
Этап 4.1
Перепишем в виде .
Этап 4.2
Перепишем в виде .
Этап 4.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Перепишем в виде .
Этап 4.3.2
Изменим порядок и .
Этап 4.4
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 4.5
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 4.5.1
Объединим числители над общим знаменателем.
Этап 4.5.2
Объединим числители над общим знаменателем.
Этап 4.5.3
Умножим на .
Этап 4.5.4
Умножим на .
Этап 4.6
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 4.6.1
Вынесем полную степень из .
Этап 4.6.2
Вынесем полную степень из .
Этап 4.6.3
Перегруппируем дробь .
Этап 4.7
Вынесем члены из-под знака корня.
Этап 4.8
Объединим и .
Этап 5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 6
Чтобы привести выражение к виду функции от переменной , перепишем уравнение, поместив с одной стороны от знака равенства, а выражение, которое зависит только от , с другой стороны.