Введите задачу...
Основы мат. анализа Примеры
Этап 1
С помощью запишем в виде .
Этап 2
Перепишем в экспоненциальной форме, используя определение логарифма. Если и — положительные вещественные числа и , то эквивалентно .
Этап 3
Этап 3.1
Перепишем уравнение в виде .
Этап 3.2
Возведем обе части уравнения в степень , чтобы исключить дробный показатель в левой части.
Этап 3.3
Упростим показатель степени.
Этап 3.3.1
Упростим левую часть.
Этап 3.3.1.1
Упростим .
Этап 3.3.1.1.1
Перемножим экспоненты в .
Этап 3.3.1.1.1.1
Применим правило степени и перемножим показатели, .
Этап 3.3.1.1.1.2
Сократим общий множитель .
Этап 3.3.1.1.1.2.1
Сократим общий множитель.
Этап 3.3.1.1.1.2.2
Перепишем это выражение.
Этап 3.3.1.1.2
Упростим.
Этап 3.3.2
Упростим правую часть.
Этап 3.3.2.1
Упростим .
Этап 3.3.2.1.1
Перемножим экспоненты в .
Этап 3.3.2.1.1.1
Применим правило степени и перемножим показатели, .
Этап 3.3.2.1.1.2
Умножим на .
Этап 3.3.2.1.2
Возведем в степень .
Этап 3.4
Решим относительно .
Этап 3.4.1
Перенесем все члены без в правую часть уравнения.
Этап 3.4.1.1
Добавим к обеим частям уравнения.
Этап 3.4.1.2
Добавим и .
Этап 3.4.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 4
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: