Введите задачу...
Основы мат. анализа Примеры
Этап 1
Этап 1.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 1.1.1
Вынесем множитель из .
Этап 1.1.2
Запишем как плюс
Этап 1.1.3
Применим свойство дистрибутивности.
Этап 1.2
Вынесем наибольший общий делитель из каждой группы.
Этап 1.2.1
Сгруппируем первые два члена и последние два члена.
Этап 1.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 1.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3
Этап 3.1
Приравняем к .
Этап 3.2
Решим относительно .
Этап 3.2.1
Вычтем из обеих частей уравнения.
Этап 3.2.2
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 3.2.3
Упростим правую часть.
Этап 3.2.3.1
Точное значение : .
Этап 3.2.4
Функция синуса отрицательна в третьем и четвертом квадрантах. Для нахождения второго решения вычтем решение из , чтобы найти угол приведения. Затем добавим этот угол приведения к и найдем решение в третьем квадранте.
Этап 3.2.5
Упростим выражение, чтобы найти второе решение.
Этап 3.2.5.1
Вычтем из .
Этап 3.2.5.2
Результирующий угол является положительным, меньшим и отличается от на полный оборот.
Этап 3.2.6
Найдем период .
Этап 3.2.6.1
Период функции можно вычислить по формуле .
Этап 3.2.6.2
Заменим на в формуле периода.
Этап 3.2.6.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 3.2.6.4
Разделим на .
Этап 3.2.7
Добавим к каждому отрицательному углу, чтобы получить положительные углы.
Этап 3.2.7.1
Добавим к , чтобы найти положительный угол.
Этап 3.2.7.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.2.7.3
Объединим дроби.
Этап 3.2.7.3.1
Объединим и .
Этап 3.2.7.3.2
Объединим числители над общим знаменателем.
Этап 3.2.7.4
Упростим числитель.
Этап 3.2.7.4.1
Умножим на .
Этап 3.2.7.4.2
Вычтем из .
Этап 3.2.7.5
Перечислим новые углы.
Этап 3.2.8
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 4
Этап 4.1
Приравняем к .
Этап 4.2
Решим относительно .
Этап 4.2.1
Вычтем из обеих частей уравнения.
Этап 4.2.2
Разделим каждый член на и упростим.
Этап 4.2.2.1
Разделим каждый член на .
Этап 4.2.2.2
Упростим левую часть.
Этап 4.2.2.2.1
Сократим общий множитель .
Этап 4.2.2.2.1.1
Сократим общий множитель.
Этап 4.2.2.2.1.2
Разделим на .
Этап 4.2.2.3
Упростим правую часть.
Этап 4.2.2.3.1
Вынесем знак минуса перед дробью.
Этап 4.2.3
Множество значений синуса: . Поскольку не попадает в этот диапазон, решение отсутствует.
Нет решения
Нет решения
Нет решения
Этап 5
Окончательным решением являются все значения, при которых верно.
, для любого целого