Введите задачу...
Основы мат. анализа Примеры
Этап 1
Этап 1.1
Добавим к обеим частям уравнения.
Этап 1.2
Составим полный квадрат для .
Этап 1.2.1
Применим форму , чтобы найти значения , и .
Этап 1.2.2
Рассмотрим параболу в форме с выделенной вершиной.
Этап 1.2.3
Найдем значение по формуле .
Этап 1.2.3.1
Подставим значения и в формулу .
Этап 1.2.3.2
Упростим правую часть.
Этап 1.2.3.2.1
Сократим общий множитель и .
Этап 1.2.3.2.1.1
Вынесем множитель из .
Этап 1.2.3.2.1.2
Сократим общие множители.
Этап 1.2.3.2.1.2.1
Вынесем множитель из .
Этап 1.2.3.2.1.2.2
Сократим общий множитель.
Этап 1.2.3.2.1.2.3
Перепишем это выражение.
Этап 1.2.3.2.2
Сократим общий множитель и .
Этап 1.2.3.2.2.1
Вынесем множитель из .
Этап 1.2.3.2.2.2
Сократим общие множители.
Этап 1.2.3.2.2.2.1
Вынесем множитель из .
Этап 1.2.3.2.2.2.2
Сократим общий множитель.
Этап 1.2.3.2.2.2.3
Перепишем это выражение.
Этап 1.2.3.2.2.2.4
Разделим на .
Этап 1.2.4
Найдем значение по формуле .
Этап 1.2.4.1
Подставим значения , и в формулу .
Этап 1.2.4.2
Упростим правую часть.
Этап 1.2.4.2.1
Упростим каждый член.
Этап 1.2.4.2.1.1
Возведем в степень .
Этап 1.2.4.2.1.2
Умножим на .
Этап 1.2.4.2.1.3
Разделим на .
Этап 1.2.4.2.1.4
Умножим на .
Этап 1.2.4.2.2
Вычтем из .
Этап 1.2.5
Подставим значения , и в уравнение с заданной вершиной .
Этап 1.3
Подставим вместо в уравнение .
Этап 1.4
Перенесем в правую часть уравнения, прибавив к обеим частям.
Этап 1.5
Составим полный квадрат для .
Этап 1.5.1
Применим форму , чтобы найти значения , и .
Этап 1.5.2
Рассмотрим параболу в форме с выделенной вершиной.
Этап 1.5.3
Найдем значение по формуле .
Этап 1.5.3.1
Подставим значения и в формулу .
Этап 1.5.3.2
Упростим правую часть.
Этап 1.5.3.2.1
Сократим общий множитель и .
Этап 1.5.3.2.1.1
Вынесем множитель из .
Этап 1.5.3.2.1.2
Сократим общие множители.
Этап 1.5.3.2.1.2.1
Вынесем множитель из .
Этап 1.5.3.2.1.2.2
Сократим общий множитель.
Этап 1.5.3.2.1.2.3
Перепишем это выражение.
Этап 1.5.3.2.2
Сократим общий множитель .
Этап 1.5.3.2.2.1
Сократим общий множитель.
Этап 1.5.3.2.2.2
Перепишем это выражение.
Этап 1.5.4
Найдем значение по формуле .
Этап 1.5.4.1
Подставим значения , и в формулу .
Этап 1.5.4.2
Упростим правую часть.
Этап 1.5.4.2.1
Упростим каждый член.
Этап 1.5.4.2.1.1
Возведем в степень .
Этап 1.5.4.2.1.2
Умножим на .
Этап 1.5.4.2.1.3
Разделим на .
Этап 1.5.4.2.1.4
Умножим на .
Этап 1.5.4.2.2
Добавим и .
Этап 1.5.5
Подставим значения , и в уравнение с заданной вершиной .
Этап 1.6
Подставим вместо в уравнение .
Этап 1.7
Перенесем в правую часть уравнения, прибавив к обеим частям.
Этап 1.8
Упростим .
Этап 1.8.1
Добавим и .
Этап 1.8.2
Вычтем из .
Этап 1.9
Разделим каждый член на , чтобы правая часть была равна единице.
Этап 1.10
Упростим каждый член уравнения, чтобы правая часть была равна . Стандартная форма уравнения эллипса или гиперболы требует, чтобы правая часть уравнения была равна .
Этап 2
Это формула гиперболы. Используем эту формулу для определения вершин и асимптот гиперболы.
Этап 3
Сопоставим параметры гиперболы со значениями в стандартной форме. Переменная представляет сдвиг по оси X от начала координат, — сдвиг по оси Y от начала координат, .
Этап 4
Центр гиперболы имеет вид . Подставим значения и .
Этап 5
Этап 5.1
Найдем расстояние от центра до фокуса гиперболы, используя следующую формулу.
Этап 5.2
Подставим значения и в формулу.
Этап 5.3
Упростим.
Этап 5.3.1
Возведем в степень .
Этап 5.3.2
Возведем в степень .
Этап 5.3.3
Добавим и .
Этап 5.3.4
Перепишем в виде .
Этап 5.3.5
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 6
Этап 6.1
Первую вершину гиперболы можно найти, добавив к .
Этап 6.2
Подставим известные значения , и в формулу и упростим.
Этап 6.3
Вторую вершину гиперболы можно найти, вычтя из .
Этап 6.4
Подставим известные значения , и в формулу и упростим.
Этап 6.5
Вершины гиперболы имеют вид . Гиперболы имеют две вершины.
Этап 7
Этап 7.1
Первый фокус гиперболы можно найти, добавив к .
Этап 7.2
Подставим известные значения , и в формулу и упростим.
Этап 7.3
Второй фокус гиперболы можно найти, вычтя из .
Этап 7.4
Подставим известные значения , и в формулу и упростим.
Этап 7.5
Фокусы гиперболы имеют вид . Гиперболы имеют два фокуса.
Этап 8
Этап 8.1
Найдем эксцентриситет по приведенной ниже формуле.
Этап 8.2
Подставим значения и в формулу.
Этап 8.3
Упростим.
Этап 8.3.1
Упростим числитель.
Этап 8.3.1.1
Возведем в степень .
Этап 8.3.1.2
Возведем в степень .
Этап 8.3.1.3
Добавим и .
Этап 8.3.1.4
Перепишем в виде .
Этап 8.3.1.5
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 8.3.2
Сократим общий множитель и .
Этап 8.3.2.1
Вынесем множитель из .
Этап 8.3.2.2
Сократим общие множители.
Этап 8.3.2.2.1
Вынесем множитель из .
Этап 8.3.2.2.2
Сократим общий множитель.
Этап 8.3.2.2.3
Перепишем это выражение.
Этап 9
Этап 9.1
Найдем значение фокального параметра гиперболы по следующей формуле.
Этап 9.2
Подставим значения и в формулу.
Этап 9.3
Упростим.
Этап 9.3.1
Возведем в степень .
Этап 9.3.2
Сократим общий множитель и .
Этап 9.3.2.1
Вынесем множитель из .
Этап 9.3.2.2
Сократим общие множители.
Этап 9.3.2.2.1
Вынесем множитель из .
Этап 9.3.2.2.2
Сократим общий множитель.
Этап 9.3.2.2.3
Перепишем это выражение.
Этап 10
Асимптоты имеют вид , так как ветви этой гиперболы направлены вверх и вниз.
Этап 11
Этап 11.1
Избавимся от скобок.
Этап 11.2
Упростим .
Этап 11.2.1
Упростим каждый член.
Этап 11.2.1.1
Умножим на .
Этап 11.2.1.2
Применим свойство дистрибутивности.
Этап 11.2.1.3
Объединим и .
Этап 11.2.1.4
Умножим на .
Этап 11.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 11.2.3
Объединим и .
Этап 11.2.4
Объединим числители над общим знаменателем.
Этап 11.2.5
Упростим числитель.
Этап 11.2.5.1
Умножим на .
Этап 11.2.5.2
Добавим и .
Этап 12
Этап 12.1
Избавимся от скобок.
Этап 12.2
Упростим .
Этап 12.2.1
Упростим каждый член.
Этап 12.2.1.1
Умножим на .
Этап 12.2.1.2
Применим свойство дистрибутивности.
Этап 12.2.1.3
Объединим и .
Этап 12.2.1.4
Умножим на .
Этап 12.2.1.5
Перенесем влево от .
Этап 12.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 12.2.3
Объединим и .
Этап 12.2.4
Объединим числители над общим знаменателем.
Этап 12.2.5
Упростим числитель.
Этап 12.2.5.1
Умножим на .
Этап 12.2.5.2
Добавим и .
Этап 13
Эта гипербола имеет две асимптоты.
Этап 14
Эти значения представляются важными для построения графика и анализа гиперболы.
Центр:
Вершины:
Фокусы:
Эксцентриситет:
Фокальный параметр:
Асимптоты: ,
Этап 15