Основы мат. анализа Примеры

Этап 1
Упростим левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 1.1.1
Применим свойство дистрибутивности.
Этап 1.1.2
Применим свойство дистрибутивности.
Этап 1.1.3
Применим свойство дистрибутивности.
Этап 1.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Умножим на .
Этап 1.2.2
Перепишем в виде .
Этап 1.2.3
Умножим на .
Этап 2
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 2.1
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Сгруппируем первые два члена и последние два члена.
Этап 2.1.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 2.2
Разложим многочлен, вынеся наибольший общий делитель .
Этап 3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Приравняем к .
Этап 4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Добавим к обеим частям уравнения.
Этап 4.2.2
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 4.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.3.1
Точное значение : .
Этап 4.2.4
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 4.2.5
Упростим .
Нажмите для увеличения количества этапов...
Этап 4.2.5.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 4.2.5.2
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 4.2.5.2.1
Объединим и .
Этап 4.2.5.2.2
Объединим числители над общим знаменателем.
Этап 4.2.5.3
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.2.5.3.1
Перенесем влево от .
Этап 4.2.5.3.2
Вычтем из .
Этап 4.2.6
Найдем период .
Нажмите для увеличения количества этапов...
Этап 4.2.6.1
Период функции можно вычислить по формуле .
Этап 4.2.6.2
Заменим на в формуле периода.
Этап 4.2.6.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 4.2.6.4
Разделим на .
Этап 4.2.7
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Приравняем к .
Этап 5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.2.1
Добавим к обеим частям уравнения.
Этап 5.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.2.2.1
Разделим каждый член на .
Этап 5.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.2.2.2.1.1
Сократим общий множитель.
Этап 5.2.2.2.1.2
Разделим на .
Этап 5.2.3
Возьмем обратный косинус обеих частей уравнения, чтобы извлечь из косинуса.
Этап 5.2.4
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.4.1
Точное значение : .
Этап 5.2.5
Функция косинуса положительна в первом и четвертом квадрантах. Чтобы найти второе решение, вычтем угол приведения из и найдем решение в четвертом квадранте.
Этап 5.2.6
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.2.6.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5.2.6.2
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 5.2.6.2.1
Объединим и .
Этап 5.2.6.2.2
Объединим числители над общим знаменателем.
Этап 5.2.6.3
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 5.2.6.3.1
Умножим на .
Этап 5.2.6.3.2
Вычтем из .
Этап 5.2.7
Найдем период .
Нажмите для увеличения количества этапов...
Этап 5.2.7.1
Период функции можно вычислить по формуле .
Этап 5.2.7.2
Заменим на в формуле периода.
Этап 5.2.7.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 5.2.7.4
Разделим на .
Этап 5.2.8
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
, для любого целого
, для любого целого
Этап 6
Окончательным решением являются все значения, при которых верно.
, для любого целого