Основы мат. анализа Примеры

Определить корни (нули) P(x)=x^3+3x^2-4
Этап 1
Приравняем к .
Этап 2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Разложим на множители, используя теорему о рациональных корнях.
Нажмите для увеличения количества этапов...
Этап 2.1.1.1
Если у многочленной функции целые коэффициенты, то каждый рациональный ноль будет иметь вид , где  — делитель константы, а  — делитель старшего коэффициента.
Этап 2.1.1.2
Найдем все комбинации . Это ― возможные корни многочлена.
Этап 2.1.1.3
Подставим и упростим выражение. В этом случае выражение равно , поэтому является корнем многочлена.
Нажмите для увеличения количества этапов...
Этап 2.1.1.3.1
Подставим в многочлен.
Этап 2.1.1.3.2
Возведем в степень .
Этап 2.1.1.3.3
Возведем в степень .
Этап 2.1.1.3.4
Умножим на .
Этап 2.1.1.3.5
Добавим и .
Этап 2.1.1.3.6
Вычтем из .
Этап 2.1.1.4
Поскольку  — известный корень, разделим многочлен на , чтобы найти частное многочленов. Этот многочлен можно будет использовать, чтобы найти оставшиеся корни.
Этап 2.1.1.5
Разделим на .
Нажмите для увеличения количества этапов...
Этап 2.1.1.5.1
Подготовим многочлены к делению. Если слагаемые представляют не все экспоненты, добавим отсутствующий член со значением .
-++-
Этап 2.1.1.5.2
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
-++-
Этап 2.1.1.5.3
Умножим новое частное на делитель.
-++-
+-
Этап 2.1.1.5.4
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
-++-
-+
Этап 2.1.1.5.5
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
-++-
-+
+
Этап 2.1.1.5.6
Вынесем следующие члены из исходного делимого в текущее делимое.
-++-
-+
++
Этап 2.1.1.5.7
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
+
-++-
-+
++
Этап 2.1.1.5.8
Умножим новое частное на делитель.
+
-++-
-+
++
+-
Этап 2.1.1.5.9
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
+
-++-
-+
++
-+
Этап 2.1.1.5.10
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
+
-++-
-+
++
-+
+
Этап 2.1.1.5.11
Вынесем следующие члены из исходного делимого в текущее делимое.
+
-++-
-+
++
-+
+-
Этап 2.1.1.5.12
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
++
-++-
-+
++
-+
+-
Этап 2.1.1.5.13
Умножим новое частное на делитель.
++
-++-
-+
++
-+
+-
+-
Этап 2.1.1.5.14
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
++
-++-
-+
++
-+
+-
-+
Этап 2.1.1.5.15
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
++
-++-
-+
++
-+
+-
-+
Этап 2.1.1.5.16
Поскольку остаток равен , окончательным ответом является частное.
Этап 2.1.1.6
Запишем в виде набора множителей.
Этап 2.1.2
Разложим на множители, используя правило полных квадратов.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Перепишем в виде .
Этап 2.1.2.2
Проверим, чтобы средний член был равен удвоенному произведению корней из первого и третьего членов.
Этап 2.1.2.3
Перепишем многочлен.
Этап 2.1.2.4
Разложим на множители, используя правило выделения полного квадрата из квадратного трехчлена , где и .
Этап 2.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.3
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Приравняем к .
Этап 2.3.2
Добавим к обеим частям уравнения.
Этап 2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.1
Приравняем к .
Этап 2.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.4.2.1
Приравняем к .
Этап 2.4.2.2
Вычтем из обеих частей уравнения.
Этап 2.5
Окончательным решением являются все значения, при которых верно.
Этап 3