Основы мат. анализа Примеры

Step 1
Вычтем из обеих частей уравнения.
Step 2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Разделим каждый член на .
Упростим левую часть.
Нажмите для увеличения количества этапов...
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Сократим общий множитель.
Разделим на .
Упростим правую часть.
Нажмите для увеличения количества этапов...
Вынесем знак минуса перед дробью.
Step 3
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Step 4
Упростим правую часть.
Нажмите для увеличения количества этапов...
Точное значение : .
Step 5
Функция синуса отрицательна в третьем и четвертом квадрантах. Для нахождения второго решения вычтем решение из , чтобы найти угол приведения. Затем добавим этот угол приведения к и найдем решение в третьем квадранте.
Step 6
Упростим выражение, чтобы найти второе решение.
Нажмите для увеличения количества этапов...
Вычтем из .
Результирующий угол является положительным, меньшим и отличается от на полный оборот.
Step 7
Найдем период .
Нажмите для увеличения количества этапов...
Период функции можно вычислить по формуле .
Заменим на в формуле периода.
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Разделим на .
Step 8
Добавим к каждому отрицательному углу, чтобы получить положительные углы.
Нажмите для увеличения количества этапов...
Добавим к , чтобы найти положительный угол.
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Объединим дроби.
Нажмите для увеличения количества этапов...
Объединим и .
Объединим числители над общим знаменателем.
Упростим числитель.
Нажмите для увеличения количества этапов...
Умножим на .
Вычтем из .
Перечислим новые углы.
Step 9
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
Файлы cookie и конфиденциальность
На этом сайте используются файлы cookie, чтобы сделать использование ресурса наиболее эффективным.
Дополнительная информация