Введите задачу...
Основы мат. анализа Примеры
Этап 1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 2
Этап 2.1
Разложим на множители, используя метод группировки.
Этап 2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 2.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.3
Приравняем к , затем решим относительно .
Этап 2.3.1
Приравняем к .
Этап 2.3.2
Добавим к обеим частям уравнения.
Этап 2.4
Приравняем к , затем решим относительно .
Этап 2.4.1
Приравняем к .
Этап 2.4.2
Вычтем из обеих частей уравнения.
Этап 2.5
Окончательным решением являются все значения, при которых верно.
Этап 3
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 4
Этап 4.1
Добавим к обеим частям уравнения.
Этап 4.2
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 4.3
Упростим .
Этап 4.3.1
Перепишем в виде .
Этап 4.3.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 4.4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 4.4.1
Сначала с помощью положительного значения найдем первое решение.
Этап 4.4.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 4.4.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 5
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 6
Этап 6.1
Приравняем числитель к нулю.
Этап 6.2
Решим уравнение относительно .
Этап 6.2.1
Разложим левую часть уравнения на множители.
Этап 6.2.1.1
Вынесем множитель из .
Этап 6.2.1.1.1
Вынесем множитель из .
Этап 6.2.1.1.2
Вынесем множитель из .
Этап 6.2.1.1.3
Вынесем множитель из .
Этап 6.2.1.1.4
Вынесем множитель из .
Этап 6.2.1.1.5
Вынесем множитель из .
Этап 6.2.1.2
Разложим на множители.
Этап 6.2.1.2.1
Разложим на множители, используя метод группировки.
Этап 6.2.1.2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 6.2.1.2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 6.2.1.2.2
Избавимся от ненужных скобок.
Этап 6.2.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 6.2.3
Приравняем к .
Этап 6.2.4
Приравняем к , затем решим относительно .
Этап 6.2.4.1
Приравняем к .
Этап 6.2.4.2
Добавим к обеим частям уравнения.
Этап 6.2.5
Приравняем к , затем решим относительно .
Этап 6.2.5.1
Приравняем к .
Этап 6.2.5.2
Вычтем из обеих частей уравнения.
Этап 6.2.6
Окончательным решением являются все значения, при которых верно.
Этап 6.3
Исключим решения, которые не делают истинным.
Этап 7
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества:
Этап 8