Основы мат. анализа Примеры

Вычислить функциональное выражение f(x)=2(x^7+2) ; find f^-1(x)
; find
Этап 1
Запишем в виде уравнения.
Этап 2
Поменяем переменные местами.
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Перепишем уравнение в виде .
Этап 3.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Разделим каждый член на .
Этап 3.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.1
Сократим общий множитель.
Этап 3.2.2.1.2
Разделим на .
Этап 3.3
Вычтем из обеих частей уравнения.
Этап 3.4
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 3.5
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.5.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.5.2
Объединим и .
Этап 3.5.3
Объединим числители над общим знаменателем.
Этап 3.5.4
Умножим на .
Этап 3.5.5
Перепишем в виде .
Этап 4
Заменим на , чтобы получить окончательный ответ.
Этап 5
Проверим, является ли обратной к .
Нажмите для увеличения количества этапов...
Этап 5.1
Чтобы подтвердить обратную, проверим выполнение условий и .
Этап 5.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 5.2.1
Представим результирующую суперпозицию функций.
Этап 5.2.2
Найдем значение , подставив значение в .
Этап 5.2.3
Объединим и под одним знаком корня.
Этап 5.2.4
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 5.2.4.1
Вынесем множитель из .
Этап 5.2.4.2
Вынесем множитель из .
Этап 5.2.5
Упростим путем вычитания чисел.
Нажмите для увеличения количества этапов...
Этап 5.2.5.1
Вычтем из .
Этап 5.2.5.2
Добавим и .
Этап 5.2.6
Сократим выражение, путем отбрасывания общих множителей.
Нажмите для увеличения количества этапов...
Этап 5.2.6.1
Сократим выражение путем отбрасывания общих множителей.
Нажмите для увеличения количества этапов...
Этап 5.2.6.1.1
Сократим общий множитель.
Этап 5.2.6.1.2
Перепишем это выражение.
Этап 5.2.6.2
Разделим на .
Этап 5.2.7
Вынесем члены из-под знака корня, предполагая, что это вещественные числа.
Этап 5.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 5.3.1
Представим результирующую суперпозицию функций.
Этап 5.3.2
Найдем значение , подставив значение в .
Этап 5.3.3
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 5.3.3.1
Применим правило умножения к .
Этап 5.3.3.2
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 5.3.3.2.1
С помощью запишем в виде .
Этап 5.3.3.2.2
Применим правило степени и перемножим показатели, .
Этап 5.3.3.2.3
Объединим и .
Этап 5.3.3.2.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.3.2.4.1
Сократим общий множитель.
Этап 5.3.3.2.4.2
Перепишем это выражение.
Этап 5.3.3.2.5
Упростим.
Этап 5.3.3.3
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 5.3.3.3.1
С помощью запишем в виде .
Этап 5.3.3.3.2
Применим правило степени и перемножим показатели, .
Этап 5.3.3.3.3
Объединим и .
Этап 5.3.3.3.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.3.3.4.1
Сократим общий множитель.
Этап 5.3.3.3.4.2
Перепишем это выражение.
Этап 5.3.3.3.5
Найдем экспоненту.
Этап 5.3.4
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 5.3.5
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 5.3.5.1
Объединим и .
Этап 5.3.5.2
Объединим числители над общим знаменателем.
Этап 5.3.6
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 5.3.6.1
Умножим на .
Этап 5.3.6.2
Добавим и .
Этап 5.3.6.3
Добавим и .
Этап 5.3.7
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.7.1
Сократим общий множитель.
Этап 5.3.7.2
Перепишем это выражение.
Этап 5.4
Так как и , то  — обратная к .