Основы мат. анализа Примеры

Вычислить функциональное выражение f(x)=(x^3)/7 ; find f^-1(x)
; find
Этап 1
Запишем в виде уравнения.
Этап 2
Поменяем переменные местами.
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Перепишем уравнение в виде .
Этап 3.2
Умножим обе части уравнения на .
Этап 3.3
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Сократим общий множитель.
Этап 3.3.1.2
Перепишем это выражение.
Этап 3.4
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 4
Заменим на , чтобы получить окончательный ответ.
Этап 5
Проверим, является ли обратной к .
Нажмите для увеличения количества этапов...
Этап 5.1
Чтобы подтвердить обратную, проверим выполнение условий и .
Этап 5.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 5.2.1
Представим результирующую суперпозицию функций.
Этап 5.2.2
Найдем значение , подставив значение в .
Этап 5.2.3
Объединим и .
Этап 5.2.4
Сократим выражение, путем отбрасывания общих множителей.
Нажмите для увеличения количества этапов...
Этап 5.2.4.1
Сократим выражение путем отбрасывания общих множителей.
Нажмите для увеличения количества этапов...
Этап 5.2.4.1.1
Сократим общий множитель.
Этап 5.2.4.1.2
Перепишем это выражение.
Этап 5.2.4.2
Разделим на .
Этап 5.2.5
Вынесем члены из-под знака корня, предполагая, что это вещественные числа.
Этап 5.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 5.3.1
Представим результирующую суперпозицию функций.
Этап 5.3.2
Найдем значение , подставив значение в .
Этап 5.3.3
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 5.3.3.1
С помощью запишем в виде .
Этап 5.3.3.2
Применим правило степени и перемножим показатели, .
Этап 5.3.3.3
Объединим и .
Этап 5.3.3.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.3.4.1
Сократим общий множитель.
Этап 5.3.3.4.2
Перепишем это выражение.
Этап 5.3.3.5
Упростим.
Этап 5.3.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.4.1
Сократим общий множитель.
Этап 5.3.4.2
Разделим на .
Этап 5.4
Так как и , то  — обратная к .