Основы мат. анализа Примеры

Найти асимптоты f(x)=(x^3+3x^2)/(x^2+2x-3)
Этап 1
Найдем, где выражение не определено.
Этап 2
Поскольку как слева, а как справа, то  — вертикальная асимптота.
Этап 3
Рассмотрим рациональную функцию , где  — степень числителя, а  — степень знаменателя.
1. Если , тогда ось x, , служит горизонтальной асимптотой.
2. Если , тогда горизонтальной асимптотой служит линия .
3. Если , тогда нет горизонтальной асимптоты (есть наклонная асимптота).
Этап 4
Найдем и .
Этап 5
Поскольку , горизонтальная асимптота отсутствует.
Нет горизонтальных асимптот
Этап 6
Найдем наклонную асимптоту, используя деление многочленов.
Нажмите для увеличения количества этапов...
Этап 6.1
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 6.1.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 6.1.1.1
Вынесем множитель из .
Этап 6.1.1.2
Вынесем множитель из .
Этап 6.1.1.3
Вынесем множитель из .
Этап 6.1.2
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 6.1.2.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 6.1.2.2
Запишем разложение на множители, используя данные целые числа.
Этап 6.1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.1.3.1
Сократим общий множитель.
Этап 6.1.3.2
Перепишем это выражение.
Этап 6.2
Подготовим многочлены к делению. Если слагаемые представляют не все экспоненты, добавим отсутствующий член со значением .
-++
Этап 6.3
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
-++
Этап 6.4
Умножим новое частное на делитель.
-++
+-
Этап 6.5
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
-++
-+
Этап 6.6
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
-++
-+
+
Этап 6.7
Вынесем следующие члены из исходного делимого в текущее делимое.
-++
-+
++
Этап 6.8
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
+
-++
-+
++
Этап 6.9
Умножим новое частное на делитель.
+
-++
-+
++
+-
Этап 6.10
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
+
-++
-+
++
-+
Этап 6.11
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
+
-++
-+
++
-+
+
Этап 6.12
Окончательный ответ: неполное частное плюс остаток, деленный на делитель.
Этап 6.13
Разобьем решение на многочлен и остаток.
Этап 6.14
Наклонная асимптота ― это полиномиальная часть результата деления в столбик.
Этап 7
Это множество всех асимптот.
Вертикальные асимптоты:
Нет горизонтальных асимптот
Наклонные асимптоты:
Этап 8