Введите задачу...
Основы мат. анализа Примеры
Этап 1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 2
Этап 2.1
Вычтем из обеих частей уравнения.
Этап 2.2
Разделим каждый член на и упростим.
Этап 2.2.1
Разделим каждый член на .
Этап 2.2.2
Упростим левую часть.
Этап 2.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 2.2.2.2
Сократим общий множитель .
Этап 2.2.2.2.1
Сократим общий множитель.
Этап 2.2.2.2.2
Разделим на .
Этап 2.2.3
Упростим правую часть.
Этап 2.2.3.1
Сократим общий множитель и .
Этап 2.2.3.1.1
Вынесем множитель из .
Этап 2.2.3.1.2
Вынесем знак минуса из знаменателя .
Этап 2.2.3.2
Упростим выражение.
Этап 2.2.3.2.1
Перепишем в виде .
Этап 2.2.3.2.2
Умножим на .
Этап 3
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 4
Этап 4.1
Вынесем множитель из .
Этап 4.1.1
Вынесем множитель из .
Этап 4.1.2
Вынесем множитель из .
Этап 4.1.3
Вынесем множитель из .
Этап 4.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4.3
Приравняем к .
Этап 4.4
Приравняем к , затем решим относительно .
Этап 4.4.1
Приравняем к .
Этап 4.4.2
Решим относительно .
Этап 4.4.2.1
Вычтем из обеих частей уравнения.
Этап 4.4.2.2
Разделим каждый член на и упростим.
Этап 4.4.2.2.1
Разделим каждый член на .
Этап 4.4.2.2.2
Упростим левую часть.
Этап 4.4.2.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 4.4.2.2.2.2
Разделим на .
Этап 4.4.2.2.3
Упростим правую часть.
Этап 4.4.2.2.3.1
Вынесем знак минуса из знаменателя .
Этап 4.4.2.2.3.2
Перепишем в виде .
Этап 4.4.2.2.3.3
Умножим на .
Этап 4.5
Окончательным решением являются все значения, при которых верно.
Этап 5
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества: