Основы мат. анализа Примеры

Найти область определения (x^3)/( кубический корень из 1-x^3)
Этап 1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в куб.
Этап 2.2
Упростим каждую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.2.1
С помощью запишем в виде .
Этап 2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1.1
Применим правило степени и перемножим показатели, .
Этап 2.2.2.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1.2.1
Сократим общий множитель.
Этап 2.2.2.1.1.2.2
Перепишем это выражение.
Этап 2.2.2.1.2
Упростим.
Этап 2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.3.1
Возведение в любую положительную степень дает .
Этап 2.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Вычтем из обеих частей уравнения.
Этап 2.3.2
Добавим к обеим частям уравнения.
Этап 2.3.3
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.3.3.1.1
Вынесем множитель из .
Этап 2.3.3.1.2
Перепишем в виде .
Этап 2.3.3.1.3
Вынесем множитель из .
Этап 2.3.3.2
Перепишем в виде .
Этап 2.3.3.3
Поскольку оба члена являются полными кубами, выполним разложение на множители, используя формулу разности кубов, , где и .
Этап 2.3.3.4
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 2.3.3.4.1
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.3.4.1.1
Умножим на .
Этап 2.3.3.4.1.2
Единица в любой степени равна единице.
Этап 2.3.3.4.2
Избавимся от ненужных скобок.
Этап 2.3.4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 2.3.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.5.1
Приравняем к .
Этап 2.3.5.2
Добавим к обеим частям уравнения.
Этап 2.3.6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.6.1
Приравняем к .
Этап 2.3.6.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.6.2.1
Используем формулу для нахождения корней квадратного уравнения.
Этап 2.3.6.2.2
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 2.3.6.2.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.6.2.3.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.3.6.2.3.1.1
Единица в любой степени равна единице.
Этап 2.3.6.2.3.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.3.6.2.3.1.2.1
Умножим на .
Этап 2.3.6.2.3.1.2.2
Умножим на .
Этап 2.3.6.2.3.1.3
Вычтем из .
Этап 2.3.6.2.3.1.4
Перепишем в виде .
Этап 2.3.6.2.3.1.5
Перепишем в виде .
Этап 2.3.6.2.3.1.6
Перепишем в виде .
Этап 2.3.6.2.3.2
Умножим на .
Этап 2.3.6.2.4
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 2.3.6.2.4.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.3.6.2.4.1.1
Единица в любой степени равна единице.
Этап 2.3.6.2.4.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.3.6.2.4.1.2.1
Умножим на .
Этап 2.3.6.2.4.1.2.2
Умножим на .
Этап 2.3.6.2.4.1.3
Вычтем из .
Этап 2.3.6.2.4.1.4
Перепишем в виде .
Этап 2.3.6.2.4.1.5
Перепишем в виде .
Этап 2.3.6.2.4.1.6
Перепишем в виде .
Этап 2.3.6.2.4.2
Умножим на .
Этап 2.3.6.2.4.3
Заменим на .
Этап 2.3.6.2.4.4
Перепишем в виде .
Этап 2.3.6.2.4.5
Вынесем множитель из .
Этап 2.3.6.2.4.6
Вынесем множитель из .
Этап 2.3.6.2.4.7
Вынесем знак минуса перед дробью.
Этап 2.3.6.2.5
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 2.3.6.2.5.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.3.6.2.5.1.1
Единица в любой степени равна единице.
Этап 2.3.6.2.5.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.3.6.2.5.1.2.1
Умножим на .
Этап 2.3.6.2.5.1.2.2
Умножим на .
Этап 2.3.6.2.5.1.3
Вычтем из .
Этап 2.3.6.2.5.1.4
Перепишем в виде .
Этап 2.3.6.2.5.1.5
Перепишем в виде .
Этап 2.3.6.2.5.1.6
Перепишем в виде .
Этап 2.3.6.2.5.2
Умножим на .
Этап 2.3.6.2.5.3
Заменим на .
Этап 2.3.6.2.5.4
Перепишем в виде .
Этап 2.3.6.2.5.5
Вынесем множитель из .
Этап 2.3.6.2.5.6
Вынесем множитель из .
Этап 2.3.6.2.5.7
Вынесем знак минуса перед дробью.
Этап 2.3.6.2.6
Окончательный ответ является комбинацией обоих решений.
Этап 2.3.7
Окончательным решением являются все значения, при которых верно.
Этап 3
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества:
Этап 4