Основы мат. анализа Примеры

Найти область определения f(x)=( квадратный корень из 2x-7)/( квадратный корень из 3-2x)
Этап 1
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Добавим к обеим частям неравенства.
Этап 2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Разделим каждый член на .
Этап 2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1
Сократим общий множитель.
Этап 2.2.2.1.2
Разделим на .
Этап 3
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Вычтем из обеих частей неравенства.
Этап 4.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Разделим каждый член на . При умножении или делении обеих частей неравенства на отрицательное значение заменим знак неравенства на противоположный.
Этап 4.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.2.1.1
Сократим общий множитель.
Этап 4.2.2.1.2
Разделим на .
Этап 4.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.3.1
Деление двух отрицательных значений дает положительное значение.
Этап 5
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 6
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в квадрат.
Этап 6.2
Упростим каждую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 6.2.1
С помощью запишем в виде .
Этап 6.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 6.2.2.1.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 6.2.2.1.1.1
Применим правило степени и перемножим показатели, .
Этап 6.2.2.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.2.2.1.1.2.1
Сократим общий множитель.
Этап 6.2.2.1.1.2.2
Перепишем это выражение.
Этап 6.2.2.1.2
Упростим.
Этап 6.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.2.3.1
Возведение в любую положительную степень дает .
Этап 6.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.3.1
Вычтем из обеих частей уравнения.
Этап 6.3.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 6.3.2.1
Разделим каждый член на .
Этап 6.3.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.3.2.2.1.1
Сократим общий множитель.
Этап 6.3.2.2.1.2
Разделим на .
Этап 6.3.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.2.3.1
Деление двух отрицательных значений дает положительное значение.
Этап 7
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение определено.
Нет решения