Введите задачу...
Основы алгебры Примеры
Этап 1
Чтобы разделить на дробь, умножим на обратную к ней дробь.
Этап 2
Этап 2.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 2.1.1
Вынесем множитель из .
Этап 2.1.2
Запишем как плюс
Этап 2.1.3
Применим свойство дистрибутивности.
Этап 2.2
Вынесем наибольший общий делитель из каждой группы.
Этап 2.2.1
Сгруппируем первые два члена и последние два члена.
Этап 2.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 2.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 3
Этап 3.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 3.1.1
Вынесем множитель из .
Этап 3.1.2
Запишем как плюс
Этап 3.1.3
Применим свойство дистрибутивности.
Этап 3.2
Вынесем наибольший общий делитель из каждой группы.
Этап 3.2.1
Сгруппируем первые два члена и последние два члена.
Этап 3.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 3.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 4
Этап 4.1
Сократим общий множитель.
Этап 4.2
Перепишем это выражение.
Этап 5
Этап 5.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 5.1.1
Вынесем множитель из .
Этап 5.1.2
Запишем как плюс
Этап 5.1.3
Применим свойство дистрибутивности.
Этап 5.2
Вынесем наибольший общий делитель из каждой группы.
Этап 5.2.1
Сгруппируем первые два члена и последние два члена.
Этап 5.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 5.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 6
Этап 6.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 6.1.1
Вынесем множитель из .
Этап 6.1.2
Запишем как плюс
Этап 6.1.3
Применим свойство дистрибутивности.
Этап 6.2
Вынесем наибольший общий делитель из каждой группы.
Этап 6.2.1
Сгруппируем первые два члена и последние два члена.
Этап 6.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 6.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 7
Этап 7.1
Вынесем множитель из .
Этап 7.2
Сократим общий множитель.
Этап 7.3
Перепишем это выражение.
Этап 8
Этап 8.1
Сократим общий множитель.
Этап 8.2
Перепишем это выражение.
Этап 9
Умножим на .