Введите задачу...
Основы алгебры Примеры
Этап 1
Чтобы разделить на дробь, умножим на обратную к ней дробь.
Этап 2
Этап 2.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 2.1.1
Вынесем множитель из .
Этап 2.1.2
Запишем как плюс
Этап 2.1.3
Применим свойство дистрибутивности.
Этап 2.1.4
Умножим на .
Этап 2.2
Вынесем наибольший общий делитель из каждой группы.
Этап 2.2.1
Сгруппируем первые два члена и последние два члена.
Этап 2.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 2.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 3
Этап 3.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 3.2
Запишем разложение на множители, используя данные целые числа.
Этап 4
Этап 4.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 4.1.1
Вынесем множитель из .
Этап 4.1.2
Запишем как плюс
Этап 4.1.3
Применим свойство дистрибутивности.
Этап 4.2
Вынесем наибольший общий делитель из каждой группы.
Этап 4.2.1
Сгруппируем первые два члена и последние два члена.
Этап 4.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 4.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 5
Этап 5.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 5.2
Запишем разложение на множители, используя данные целые числа.
Этап 6
Этап 6.1
Вынесем множитель из .
Этап 6.2
Сократим общий множитель.
Этап 6.3
Перепишем это выражение.
Этап 7
Этап 7.1
Вынесем множитель из .
Этап 7.2
Сократим общий множитель.
Этап 7.3
Перепишем это выражение.
Этап 8
Умножим на .
Этап 9
Возведем в степень .
Этап 10
Возведем в степень .
Этап 11
Применим правило степени для объединения показателей.
Этап 12
Добавим и .
Этап 13
Этап 13.1
Применим свойство дистрибутивности.
Этап 13.2
Применим свойство дистрибутивности.
Этап 13.3
Применим свойство дистрибутивности.
Этап 14
Этап 14.1
Изменим порядок множителей в членах и .
Этап 14.2
Добавим и .
Этап 14.3
Добавим и .
Этап 15
Этап 15.1
Перепишем, используя свойство коммутативности умножения.
Этап 15.2
Умножим на , сложив экспоненты.
Этап 15.2.1
Перенесем .
Этап 15.2.2
Умножим на .
Этап 15.3
Умножим на .
Этап 15.4
Умножим на .
Этап 16
Разобьем дробь на две дроби.
Этап 17
Вынесем знак минуса перед дробью.