Основы алгебры Примеры

Этап 1
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.1
Избавимся от скобок.
Этап 1.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Упростим путем перемножения.
Нажмите для увеличения количества этапов...
Этап 1.2.1.1
Применим свойство дистрибутивности.
Этап 1.2.1.2
Упорядочим.
Нажмите для увеличения количества этапов...
Этап 1.2.1.2.1
Перенесем влево от .
Этап 1.2.1.2.2
Перепишем, используя свойство коммутативности умножения.
Этап 1.2.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Перенесем .
Этап 1.2.2.2
Умножим на .
Этап 1.2.3
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 1.2.3.1
Применим свойство дистрибутивности.
Этап 1.2.3.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.3.2.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 1.2.3.2.2
Вынесем множитель из .
Этап 1.2.3.2.3
Сократим общий множитель.
Этап 1.2.3.2.4
Перепишем это выражение.
Этап 1.2.3.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.3.3.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 1.2.3.3.2
Вынесем множитель из .
Этап 1.2.3.3.3
Сократим общий множитель.
Этап 1.2.3.3.4
Перепишем это выражение.
Этап 1.2.3.4
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.2.3.4.1
Умножим на .
Этап 1.2.3.4.2
Умножим на .
Этап 1.2.3.4.3
Перепишем в виде .
Этап 1.2.3.4.4
Изменим порядок и .
Этап 2
Найдем свойства заданной параболы.
Нажмите для увеличения количества этапов...
Этап 2.1
Перепишем уравнение в форме с выделенной вершиной.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Составим полный квадрат для .
Нажмите для увеличения количества этапов...
Этап 2.1.1.1
Применим форму , чтобы найти значения , и .
Этап 2.1.1.2
Рассмотрим параболу в форме с выделенной вершиной.
Этап 2.1.1.3
Найдем значение по формуле .
Нажмите для увеличения количества этапов...
Этап 2.1.1.3.1
Подставим значения и в формулу .
Этап 2.1.1.3.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.1.1.3.2.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 2.1.1.3.2.1.1
Перепишем в виде .
Этап 2.1.1.3.2.1.2
Сократим общий множитель.
Этап 2.1.1.3.2.1.3
Перепишем это выражение.
Этап 2.1.1.3.2.2
Вынесем знак минуса перед дробью.
Этап 2.1.1.4
Найдем значение по формуле .
Нажмите для увеличения количества этапов...
Этап 2.1.1.4.1
Подставим значения , и в формулу .
Этап 2.1.1.4.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.1.1.4.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.1.1.4.2.1.1
Возведем в степень .
Этап 2.1.1.4.2.1.2
Умножим на .
Этап 2.1.1.4.2.2
Вычтем из .
Этап 2.1.1.5
Подставим значения , и в уравнение с заданной вершиной .
Этап 2.1.2
Приравняем к новой правой части.
Этап 2.2
Воспользуемся формой с выделенной вершиной , чтобы определить значения , и .
Этап 2.3
Поскольку имеет положительное значение, ветви параболы направлены вверх.
вверх
Этап 2.4
Найдем вершину .
Этап 2.5
Найдем , расстояние от вершины до фокуса.
Нажмите для увеличения количества этапов...
Этап 2.5.1
Найдем расстояние от вершины до фокуса параболы, используя следующую формулу.
Этап 2.5.2
Подставим значение в формулу.
Этап 2.5.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.5.3.1
Сократим общий множитель.
Этап 2.5.3.2
Перепишем это выражение.
Этап 2.6
Найдем фокус.
Нажмите для увеличения количества этапов...
Этап 2.6.1
Фокус параболы можно найти, добавив к координате y , если ветви параболы направлены вверх или вниз.
Этап 2.6.2
Подставим известные значения , и в формулу и упростим.
Этап 2.7
Найдем ось симметрии, то есть линию, которая проходит через вершину и фокус.
Этап 2.8
Найдем направляющую.
Нажмите для увеличения количества этапов...
Этап 2.8.1
Директриса параболы ― это горизонтальная прямая, которую можно найти вычитанием из y-координаты вершины , если ветви параболы направлены вверх или вниз.
Этап 2.8.2
Подставим известные значения и в формулу и упростим.
Этап 2.9
Используем свойства параболы для анализа и построения ее графика.
Направление ветвей: вверх
Вершина:
Фокус:
Ось симметрии:
Директриса:
Направление ветвей: вверх
Вершина:
Фокус:
Ось симметрии:
Директриса:
Этап 3
Выберем несколько значений и подставим их в уравнение, чтобы найти соответствующие значения . Значения следует выбрать вблизи вершины.
Нажмите для увеличения количества этапов...
Этап 3.1
Заменим в этом выражении переменную на .
Этап 3.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Возведем в степень .
Этап 3.2.1.2
Умножим на .
Этап 3.2.2
Добавим и .
Этап 3.2.3
Окончательный ответ: .
Этап 3.3
Значение при равно .
Этап 3.4
Заменим в этом выражении переменную на .
Этап 3.5
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 3.5.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.5.1.1
Возведем в степень .
Этап 3.5.1.2
Умножим на .
Этап 3.5.2
Добавим и .
Этап 3.5.3
Окончательный ответ: .
Этап 3.6
Значение при равно .
Этап 3.7
Заменим в этом выражении переменную на .
Этап 3.8
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 3.8.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.8.1.1
Единица в любой степени равна единице.
Этап 3.8.1.2
Умножим на .
Этап 3.8.2
Вычтем из .
Этап 3.8.3
Окончательный ответ: .
Этап 3.9
Значение при равно .
Этап 3.10
Заменим в этом выражении переменную на .
Этап 3.11
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 3.11.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.11.1.1
Возведем в степень .
Этап 3.11.1.2
Умножим на .
Этап 3.11.2
Вычтем из .
Этап 3.11.3
Окончательный ответ: .
Этап 3.12
Значение при равно .
Этап 3.13
Построим график параболы, используя ее свойства и выбранные точки.
Этап 4
Построим график параболы, используя ее свойства и выбранные точки.
Направление ветвей: вверх
Вершина:
Фокус:
Ось симметрии:
Директриса:
Этап 5