Основы алгебры Примеры

Решить, используя свойство квадратного корня 3x^2+6x=1/2*(x+2)
Этап 1
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.1
Применим свойство дистрибутивности.
Этап 1.2
Объединим и .
Этап 1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.3.1
Сократим общий множитель.
Этап 1.3.2
Перепишем это выражение.
Этап 2
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Вычтем из обеих частей уравнения.
Этап 2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.3
Объединим и .
Этап 2.4
Объединим числители над общим знаменателем.
Этап 2.5
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.5.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.5.1.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.5.1.1.1
Вынесем множитель из .
Этап 2.5.1.1.2
Вынесем множитель из .
Этап 2.5.1.1.3
Вынесем множитель из .
Этап 2.5.1.2
Умножим на .
Этап 2.5.1.3
Вычтем из .
Этап 2.5.2
Перенесем влево от .
Этап 3
Вычтем из обеих частей уравнения.
Этап 4
Умножим на наименьшее общее кратное знаменателей , затем упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Применим свойство дистрибутивности.
Этап 4.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Умножим на .
Этап 4.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Сократим общий множитель.
Этап 4.2.2.2
Перепишем это выражение.
Этап 4.2.3
Умножим на .
Этап 5
Используем формулу для нахождения корней квадратного уравнения.
Этап 6
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 7
Упростим.
Нажмите для увеличения количества этапов...
Этап 7.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 7.1.1
Возведем в степень .
Этап 7.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 7.1.2.1
Умножим на .
Этап 7.1.2.2
Умножим на .
Этап 7.1.3
Добавим и .
Этап 7.1.4
Перепишем в виде .
Этап 7.1.5
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 7.2
Умножим на .
Этап 8
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 8.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 8.1.1
Возведем в степень .
Этап 8.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 8.1.2.1
Умножим на .
Этап 8.1.2.2
Умножим на .
Этап 8.1.3
Добавим и .
Этап 8.1.4
Перепишем в виде .
Этап 8.1.5
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 8.2
Умножим на .
Этап 8.3
Заменим на .
Этап 8.4
Добавим и .
Этап 8.5
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 8.5.1
Вынесем множитель из .
Этап 8.5.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 8.5.2.1
Вынесем множитель из .
Этап 8.5.2.2
Сократим общий множитель.
Этап 8.5.2.3
Перепишем это выражение.
Этап 9
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 9.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 9.1.1
Возведем в степень .
Этап 9.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 9.1.2.1
Умножим на .
Этап 9.1.2.2
Умножим на .
Этап 9.1.3
Добавим и .
Этап 9.1.4
Перепишем в виде .
Этап 9.1.5
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 9.2
Умножим на .
Этап 9.3
Заменим на .
Этап 9.4
Вычтем из .
Этап 9.5
Разделим на .
Этап 10
Окончательный ответ является комбинацией обоих решений.