Основы алгебры Примеры

Решить, используя свойство квадратного корня 8(5x-1)^2+2=-8(5x-1)
Этап 1
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.1
Перепишем.
Этап 1.2
Упростим путем добавления нулей.
Этап 1.3
Применим свойство дистрибутивности.
Этап 1.4
Умножим.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Умножим на .
Этап 1.4.2
Умножим на .
Этап 2
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Добавим к обеим частям уравнения.
Этап 2.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Перепишем в виде .
Этап 2.2.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Применим свойство дистрибутивности.
Этап 2.2.2.2
Применим свойство дистрибутивности.
Этап 2.2.2.3
Применим свойство дистрибутивности.
Этап 2.2.3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 2.2.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.2.3.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 2.2.3.1.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.2.3.1.2.1
Перенесем .
Этап 2.2.3.1.2.2
Умножим на .
Этап 2.2.3.1.3
Умножим на .
Этап 2.2.3.1.4
Умножим на .
Этап 2.2.3.1.5
Умножим на .
Этап 2.2.3.1.6
Умножим на .
Этап 2.2.3.2
Вычтем из .
Этап 2.2.4
Применим свойство дистрибутивности.
Этап 2.2.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.5.1
Умножим на .
Этап 2.2.5.2
Умножим на .
Этап 2.2.5.3
Умножим на .
Этап 2.3
Добавим и .
Этап 2.4
Добавим и .
Этап 3
Вычтем из обеих частей уравнения.
Этап 4
Вычтем из .
Этап 5
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 5.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 5.1.1
Вынесем множитель из .
Этап 5.1.2
Вынесем множитель из .
Этап 5.1.3
Вынесем множитель из .
Этап 5.1.4
Вынесем множитель из .
Этап 5.1.5
Вынесем множитель из .
Этап 5.2
Разложим на множители, используя правило полных квадратов.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Перепишем в виде .
Этап 5.2.2
Перепишем в виде .
Этап 5.2.3
Проверим, чтобы средний член был равен удвоенному произведению корней из первого и третьего членов.
Этап 5.2.4
Перепишем многочлен.
Этап 5.2.5
Разложим на множители, используя правило выделения полного квадрата из квадратного трехчлена , где и .
Этап 6
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 6.1
Разделим каждый член на .
Этап 6.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.2.1.1
Сократим общий множитель.
Этап 6.2.1.2
Разделим на .
Этап 6.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 6.3.1
Разделим на .
Этап 7
Приравняем к .
Этап 8
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 8.1
Добавим к обеим частям уравнения.
Этап 8.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Разделим каждый член на .
Этап 8.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 8.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 8.2.2.1.1
Сократим общий множитель.
Этап 8.2.2.1.2
Разделим на .