Основы алгебры Примеры

Решить, используя свойство квадратного корня 6x^2-17x+13=20x^2-32
Этап 1
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Вычтем из .
Этап 2
Добавим к обеим частям уравнения.
Этап 3
Добавим и .
Этап 4
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 4.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Вынесем множитель из .
Этап 4.1.2
Вынесем множитель из .
Этап 4.1.3
Перепишем в виде .
Этап 4.1.4
Вынесем множитель из .
Этап 4.1.5
Вынесем множитель из .
Этап 4.2
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 4.2.1.1.1
Вынесем множитель из .
Этап 4.2.1.1.2
Запишем как плюс
Этап 4.2.1.1.3
Применим свойство дистрибутивности.
Этап 4.2.1.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 4.2.1.2.1
Сгруппируем первые два члена и последние два члена.
Этап 4.2.1.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 4.2.1.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 4.2.2
Избавимся от ненужных скобок.
Этап 5
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Приравняем к .
Этап 6.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.2.1
Добавим к обеим частям уравнения.
Этап 6.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Разделим каждый член на .
Этап 6.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.2.2.2.1.1
Сократим общий множитель.
Этап 6.2.2.2.1.2
Разделим на .
Этап 7
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 7.1
Приравняем к .
Этап 7.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 7.2.1
Вычтем из обеих частей уравнения.
Этап 7.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 7.2.2.1
Разделим каждый член на .
Этап 7.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 7.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.2.2.2.1.1
Сократим общий множитель.
Этап 7.2.2.2.1.2
Разделим на .
Этап 7.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 7.2.2.3.1
Вынесем знак минуса перед дробью.
Этап 8
Окончательным решением являются все значения, при которых верно.