Основы алгебры Примеры

Решить, используя свойство квадратного корня x^2=2x-5
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Добавим к обеим частям уравнения.
Этап 3
Используем формулу для нахождения корней квадратного уравнения.
Этап 4
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 5
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 5.1.1
Возведем в степень .
Этап 5.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 5.1.2.1
Умножим на .
Этап 5.1.2.2
Умножим на .
Этап 5.1.3
Вычтем из .
Этап 5.1.4
Перепишем в виде .
Этап 5.1.5
Перепишем в виде .
Этап 5.1.6
Перепишем в виде .
Этап 5.1.7
Перепишем в виде .
Этап 5.1.8
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 5.1.9
Перенесем влево от .
Этап 5.2
Умножим на .
Этап 5.3
Упростим .
Этап 6
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 6.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 6.1.1
Возведем в степень .
Этап 6.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 6.1.2.1
Умножим на .
Этап 6.1.2.2
Умножим на .
Этап 6.1.3
Вычтем из .
Этап 6.1.4
Перепишем в виде .
Этап 6.1.5
Перепишем в виде .
Этап 6.1.6
Перепишем в виде .
Этап 6.1.7
Перепишем в виде .
Этап 6.1.8
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 6.1.9
Перенесем влево от .
Этап 6.2
Умножим на .
Этап 6.3
Упростим .
Этап 6.4
Заменим на .
Этап 7
Упростим выражение, которое нужно решить для части значения .
Нажмите для увеличения количества этапов...
Этап 7.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 7.1.1
Возведем в степень .
Этап 7.1.2
Умножим .
Нажмите для увеличения количества этапов...
Этап 7.1.2.1
Умножим на .
Этап 7.1.2.2
Умножим на .
Этап 7.1.3
Вычтем из .
Этап 7.1.4
Перепишем в виде .
Этап 7.1.5
Перепишем в виде .
Этап 7.1.6
Перепишем в виде .
Этап 7.1.7
Перепишем в виде .
Этап 7.1.8
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 7.1.9
Перенесем влево от .
Этап 7.2
Умножим на .
Этап 7.3
Упростим .
Этап 7.4
Заменим на .
Этап 8
Окончательный ответ является комбинацией обоих решений.