Основы алгебры Примеры

Решить, используя свойство квадратного корня 3/5x^2+13/5x=2
Этап 1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1
Объединим и .
Этап 1.2
Объединим и .
Этап 2
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 2.1
Умножим каждый член на .
Этап 2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1.1
Сократим общий множитель.
Этап 2.2.1.1.2
Перепишем это выражение.
Этап 2.2.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.2.1
Сократим общий множитель.
Этап 2.2.1.2.2
Перепишем это выражение.
Этап 2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Умножим на .
Этап 3
Вычтем из обеих частей уравнения.
Этап 4
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 4.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Вынесем множитель из .
Этап 4.1.2
Запишем как плюс
Этап 4.1.3
Применим свойство дистрибутивности.
Этап 4.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Сгруппируем первые два члена и последние два члена.
Этап 4.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 4.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 5
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.1
Приравняем к .
Этап 6.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 6.2.1
Добавим к обеим частям уравнения.
Этап 6.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Разделим каждый член на .
Этап 6.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 6.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.2.2.2.1.1
Сократим общий множитель.
Этап 6.2.2.2.1.2
Разделим на .
Этап 7
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 7.1
Приравняем к .
Этап 7.2
Вычтем из обеих частей уравнения.
Этап 8
Окончательным решением являются все значения, при которых верно.