Введите задачу...
Основы алгебры Примеры
Этап 1
Этап 1.1
Вынесем множитель из .
Этап 1.2
Вынесем множитель из .
Этап 1.3
Вынесем множитель из .
Этап 2
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Этап 2.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.4
Поскольку не имеет множителей, кроме и .
— простое число
Этап 2.5
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.6
Множителем является само значение .
встречается раз.
Этап 2.7
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.8
НОК представляет собой произведение числовой части и переменной части.
Этап 3
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Этап 3.2.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.2.2
Сократим общий множитель .
Этап 3.2.2.1
Вынесем множитель из .
Этап 3.2.2.2
Сократим общий множитель.
Этап 3.2.2.3
Перепишем это выражение.
Этап 3.2.3
Сократим общий множитель .
Этап 3.2.3.1
Сократим общий множитель.
Этап 3.2.3.2
Перепишем это выражение.
Этап 3.2.4
Применим свойство дистрибутивности.
Этап 3.2.5
Умножим на .
Этап 3.3
Упростим правую часть.
Этап 3.3.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.3.2
Сократим общий множитель .
Этап 3.3.2.1
Сократим общий множитель.
Этап 3.3.2.2
Перепишем это выражение.
Этап 3.3.3
Применим свойство дистрибутивности.
Этап 3.3.4
Умножим на , сложив экспоненты.
Этап 3.3.4.1
Перенесем .
Этап 3.3.4.2
Умножим на .
Этап 3.3.5
Умножим на .
Этап 4
Этап 4.1
Поскольку находится в правой части уравнения, поменяем стороны так, чтобы оно оказалось в левой части уравнения.
Этап 4.2
Перенесем все члены с в левую часть уравнения.
Этап 4.2.1
Вычтем из обеих частей уравнения.
Этап 4.2.2
Вычтем из .
Этап 4.3
Вычтем из обеих частей уравнения.
Этап 4.4
Используем формулу для нахождения корней квадратного уравнения.
Этап 4.5
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 4.6
Упростим.
Этап 4.6.1
Упростим числитель.
Этап 4.6.1.1
Возведем в степень .
Этап 4.6.1.2
Умножим .
Этап 4.6.1.2.1
Умножим на .
Этап 4.6.1.2.2
Умножим на .
Этап 4.6.1.3
Добавим и .
Этап 4.6.2
Умножим на .
Этап 4.7
Упростим выражение, которое нужно решить для части значения .
Этап 4.7.1
Упростим числитель.
Этап 4.7.1.1
Возведем в степень .
Этап 4.7.1.2
Умножим .
Этап 4.7.1.2.1
Умножим на .
Этап 4.7.1.2.2
Умножим на .
Этап 4.7.1.3
Добавим и .
Этап 4.7.2
Умножим на .
Этап 4.7.3
Заменим на .
Этап 4.8
Упростим выражение, которое нужно решить для части значения .
Этап 4.8.1
Упростим числитель.
Этап 4.8.1.1
Возведем в степень .
Этап 4.8.1.2
Умножим .
Этап 4.8.1.2.1
Умножим на .
Этап 4.8.1.2.2
Умножим на .
Этап 4.8.1.3
Добавим и .
Этап 4.8.2
Умножим на .
Этап 4.8.3
Заменим на .
Этап 4.9
Окончательный ответ является комбинацией обоих решений.
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: